首页> 美国卫生研究院文献>other >Modeling Nitrogen Losses in Conventional and Advanced Soil-Based Onsite Wastewater Treatment Systems under Current and Changing Climate Conditions
【2h】

Modeling Nitrogen Losses in Conventional and Advanced Soil-Based Onsite Wastewater Treatment Systems under Current and Changing Climate Conditions

机译:在当前和不断变化的气候条件下模拟常规和先进的基于土壤的现场废水处理系统中氮的损失

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Most of the non-point source nitrogen (N) load in rural areas is attributed to onsite wastewater treatment systems (OWTS). Nitrogen compounds cause eutrophication, depleting the oxygen in marine ecosystems. OWTS rely on physical, chemical and biological soil processes to treat wastewater and these processes may be affected by climate change. We simulated the fate and transport of N in different types of OWTS drainfields, or soil treatment areas (STA) under current and changing climate scenarios, using 2D/3D HYDRUS software. Experimental data from a mesocosm-scale study, including soil moisture content, and total N, ammonium (NH4+) and nitrate (NO3-) concentrations, were used to calibrate the model. A water content-dependent function was used to compute the nitrification and denitrification rates. Three types of drainfields were simulated: (1) a pipe-and-stone (P&S), (2) advanced soil drainfields, pressurized shallow narrow drainfield (PSND) and (3) Geomat (GEO), a variation of SND. The model was calibrated with acceptable goodness-of-fit between the observed and measured values. Average root mean square error (RSME) ranged from 0.18 and 2.88 mg L-1 for NH4+ and 4.45 mg L-1 to 9.65 mg L-1 for NO3- in all drainfield types. The calibrated model was used to estimate N fluxes for both conventional and advanced STAs under current and changing climate conditions, i.e. increased soil temperature and higher water table. The model computed N losses from nitrification and denitrification differed little from measured losses in all STAs. The modeled N losses occurred mostly as NO3- in water outputs, accounting for more than 82% of N inputs in all drainfields. Losses as N2 were estimated to be 10.4% and 9.7% of total N input concentration for SND and Geo, respectively. The highest N2 losses, 17.6%, were estimated for P&S. Losses as N2 increased to 22%, 37% and 21% under changing climate conditions for Geo, PSND and P&S, respectively. These findings can provide practitioners with guidelines to estimate N removal efficiencies for traditional and advanced OWTS, and predict N loads and spatial distribution for identifying non-point sources. Our results show that N losses on OWTS can be modeled successfully using HYDRUS. Furthermore, the results suggest that climate change may increase the removal of N as N2 in the drainfield, with the magnitude of the effect depending on a drainfield type.
机译:农村地区的大部分非点源氮负荷归因于现场废水处理系统(OWTS)。氮化合物引起富营养化,耗尽了海洋生态系统中的氧气。 OWTS依靠物理,化学和生物土壤过程来处理废水,而这些过程可能会受到气候变化的影响。我们使用2D / 3D HYDRUS软件模拟了在当前和不断变化的气候情景下,不同类型的OWTS流域或土壤处理区(STA)中N的命运和迁移。中尺度研究的实验数据包括土壤水分含量,总氮,铵(NH4 + )和硝酸盐(NO3 -)的浓度,用于校准模型。使用水含量依赖性函数来计算硝化和反硝化速率。模拟了三种类型的流失区:(1)管道和石头(P&S),(2)高级土壤流失区,加压浅窄流失区(PSND)和(3)Geomat(GEO),这是SND的变体。使用观察值和测量值之间的可接受的拟合优度对模型进行校准。 NH4 + 和4.45 mg L -1 的平均均方根误差(RSME)为0.18和2.88 mg L -1 至9.65 mg所有漏场类型中的NO3 -的L -1 。在当前和不断变化的气候条件下(即土壤温度升高和地下水位升高),该校准模型用于估算常规和高级STA的N通量。该模型计算出的硝化和反硝化过程中的N损失与所有STA中测得的损失几乎没有差异。模拟的氮流失主要发生在水产出中的NO3 -,占所有流失区氮输入的82%以上。作为S2和Geo的总氮输入浓度,作为N2的损失估计分别为10.4%和9.7%。 P&S估计最高的N2损失为17.6%。在不断变化的气候条件下,Geo,PSND和P&S的N2损失分别增加到22%,37%和21%。这些发现可为从业人员提供指导,以评估传统和高级OWTS的N去除效率,并预测N负荷和空间分布以识别非点源。我们的结果表明,使用HYDRUS可以成功模拟OWTS上的N损失。此外,结果表明,气候变化可能会增加流失区中N的氮的去除量,其影响程度取决于流失区的类型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号