首页> 美国卫生研究院文献>other >Statistical Modelling and Characterization of Experimental mm-Wave Indoor Channels for Future 5G Wireless Communication Networks
【2h】

Statistical Modelling and Characterization of Experimental mm-Wave Indoor Channels for Future 5G Wireless Communication Networks

机译:未来5G无线通信网络的实验性毫米波室内信道的统计建模和表征

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents an experimental characterization of millimeter-wave (mm-wave) channels in the 6.5 GHz, 10.5 GHz, 15 GHz, 19 GHz, 28 GHz and 38 GHz frequency bands in an indoor corridor environment. More than 4,000 power delay profiles were measured across the bands using an omnidirectional transmitter antenna and a highly directional horn receiver antenna for both co- and cross-polarized antenna configurations. This paper develops a new path-loss model to account for the frequency attenuation with distance, which we term the frequency attenuation (FA) path-loss model and introduce a frequency-dependent attenuation factor. The large-scale path loss was characterized based on both new and well-known path-loss models. A general and less complex method is also proposed to estimate the cross-polarization discrimination (XPD) factor of close-in reference distance with the XPD (CIX) and ABG with the XPD (ABGX) path-loss models to avoid the computational complexity of minimum mean square error (MMSE) approach. Moreover, small-scale parameters such as root mean square (RMS) delay spread, mean excess (MN-EX) delay, dispersion factors and maximum excess (MAX-EX) delay parameters were used to characterize the multipath channel dispersion. Multiple statistical distributions for RMS delay spread were also investigated. The results show that our proposed models are simpler and more physically-based than other well-known models. The path-loss exponents for all studied models are smaller than that of the free-space model by values in the range of 0.1 to 1.4 for all measured frequencies. The RMS delay spread values varied between 0.2 ns and 13.8 ns, and the dispersion factor values were less than 1 for all measured frequencies. The exponential and Weibull probability distribution models best fit the RMS delay spread empirical distribution for all of the measured frequencies in all scenarios.
机译:本文介绍了室内走廊环境中6.5 GHz,10.5 GHz,15 GHz,19 GHz,28 GHz和38 GHz频段的毫米波(mm-wave)通道的实验特性。使用同向和交叉极化天线配置的全向发射机天线和高指向性号角接收机天线,在整个频带上测量了超过4,000个功率延迟曲线。本文开发了一种新的路径损耗模型来解决随距离变化的频率衰减问题,我们将其称为频率衰减(FA)路径损耗模型,并介绍了一个与频率相关的衰减因子。基于新的和众所周知的路径损耗模型来表征大规模路径损耗。还提出了一种通用且不太复杂的方法来估计XPD(CIX)和ABG与XPD(ABGX)路径损耗模型之间的近距离参考距离的交叉极化鉴别(XPD)因子,从而避免了计算的复杂性最小均方误差(MMSE)方法。此外,小尺度参数(例如,均方根(RMS)延迟扩展,平均过量(MN-EX)延迟,色散因子和最大过量(MAX-EX)延迟参数)用于表征多径信道色散。还研究了RMS延迟扩展的多种统计分布。结果表明,我们提出的模型比其他知名模型更简单,更基于物理。对于所有测量的频率,所有研究模型的路径损耗指数均比自由空间模型的路径损耗指数小,范围为0.1到1.4。 RMS延迟扩展值在0.2 ns和13.8 ns之间变化,并且所有测量频率的色散因子值均小于1。指数和Weibull概率分布模型最适合所有情况下所有测得频率的RMS延迟扩展经验分布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号