首页> 美国卫生研究院文献>other >Why do Hydrates (Solvates) Form in Small Neutral Organic Molecules? Exploring the Crystal Form Landscapes of the Alkaloids Brucine and Strychnine
【2h】

Why do Hydrates (Solvates) Form in Small Neutral Organic Molecules? Exploring the Crystal Form Landscapes of the Alkaloids Brucine and Strychnine

机译:为什么小中性有机分子会形成水合物(溶剂化物)?探索生物碱马钱子碱和马钱子碱的晶体形态景观

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Computational methods were used to generate and explore the crystal structure landscapes of the two alkaloids strychnine and brucine. The computed structures were analyzed and rationalized by correlating the modelling results to a rich pool of available experimental data. Despite their structural similarity, the two compounds show marked differences in the formation of solid forms. For strychnine only one anhydrous form is reported in the literature and two new solvates from 1,4-dioxane were detected in the course of this work. In contrast, 22 solid forms are so far known to exist for brucine, comprising two anhydrates, four hydrates (>HyA – >HyC and a 5.25-hydrate), twelve solvates (alcohols and acetone) and four heterosolvates (mixed solvates with water and alcohols). For strychnine it is hard to produce any solid form other than the stable anhydrate while the formation of specific solid state forms of brucine is governed by a complex interplay between temperature and relative humidity/water activity and it is rather a challenging to avoid hydrate formation. Differences in crystal packing and the high tendency for brucine to form hydrates are not intuitive from the molecular structure alone, as both molecules have hydrogen bond acceptor groups but lack hydrogen bond donor groups. Only the evaluation of the crystal energy landscapes, in particular the close-packed crystal structures and high-energy open frameworks containing voids of molecular (water) dimensions, allowed us to unravel the diverse solid state behavior of the two alkaloids at a molecular level. In this study we demonstrate that expanding the analysis of anhydrate crystal energy landscapes to higher energy structures and calculating the solvent-accessible volume can be used to estimate non-stoichiometric or channel hydrate (solvate) formation, without explicitly computing the hydrate/solvate crystal energy landscapes.
机译:计算方法被用于生成和探索两种生物碱士的宁和马钱子碱的晶体结构图。通过将建模结果与大量可用的实验数据相关联,对计算的结构进行了分析和合理化。尽管它们的结构相似,但这两种化合物在固体形式的形成上显示出明显的差异。对于士的宁,文献中仅报道了一种无水形式,并且在此过程中检测到了来自1,4-二恶烷的两种新的溶剂化物。相比之下,到目前为止,已知存在22种用于布鲁琴的固体形式,包括两种无水物,四种水合物(> HyA – > HyC 和5.25水合物),十二种溶剂化物(醇和丙酮)和四种杂溶剂(与水和醇类混合的溶剂化物)。对于士的宁,除稳定的无水物外,很难产生任何固体形式,而特定的固态形式的马钱子碱的形成则受温度和相对湿度/水活度之间复杂的相互作用所支配,而避免水合物的形成具有挑战性。仅从分子结构上看,晶体堆积的差异和苯丙氨酸形成水合物的高趋势是不直观的,因为两个分子都具有氢键受体基团但缺乏氢键供体基团。只有对晶体能量态势的评估,尤其是紧密堆积的晶体结构和包含分子(水)尺寸空隙的高能开放框架,才使我们能够在分子水平上揭示两种生物碱的多种固态行为。在这项研究中,我们证明了将无水合物晶体能量分布图的分析扩展到更高的能量结构并计算溶剂可及体积可以用于估计非化学计量或通道水合物(溶剂化物)的形成,而无需明确计算水合物/溶剂化物晶体的能量风景。

著录项

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号