首页> 美国卫生研究院文献>other >Hydrogen Chemical Configuration and Thermal Stability in Tungsten Disulfide Nanoparticles Exposed to Hydrogen Plasma
【2h】

Hydrogen Chemical Configuration and Thermal Stability in Tungsten Disulfide Nanoparticles Exposed to Hydrogen Plasma

机译:暴露于氢等离子体的二硫化钨纳米粒子的氢化学构型和热稳定性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The chemical configuration and interaction mechanism of hydrogen adsorbed in inorganic nanoparticles of WS2 are investigated. Our recent approaches of using hydrogen activated by either microwave or radiofrequency plasma dramatically increased the efficiency of its adsorption on the nanoparticles surface. In the current work we make an emphasis on elucidation of the chemical configuration of the adsorbed hydrogen. This configuration is of primary importance as it affects its adsorption stability and possibility of release. To get insight on the chemical configuration, we combined the experimental analysis methods with theoretical modeling based on the density functional theory (DFT). Micro-Raman spectroscopy was used as a primary tool to elucidate chemical bonding of hydrogen and to distinguish between chemi- and physisorption. Hydrogen adsorbed in molecular form (H2) was clearly identified in all the plasma-hydrogenated WS2 nanoparticles samples. It was shown that the adsorbed hydrogen is generally stable under high vacuum conditions at room temperature, which implies its stability at the ambient atmosphere. A DFT model was developed to simulate the adsorption of hydrogen in the WS2 nanoparticles. This model considers various adsorption sites and identifies the preferential locations of the adsorbed hydrogen in several WS2 structures, demonstrating good concordance between theory and experiment and providing tools for optimizing of hydrogen exposure conditions and the type of substrate materials.
机译:研究了WS2无机纳米颗粒中氢的化学构型和相互作用机理。我们最近使用由微波或射频等离子体激活的氢的方法大大提高了其在纳米颗粒表面的吸附效率。在当前的工作中,我们着重于阐明吸附氢的化学构型。该构型是最重要的,因为它影响其吸附稳定性和释放的可能性。为了深入了解化学构型,我们将实验分析方法与基于密度泛函理论(DFT)的理论模型相结合。显微拉曼光谱用作阐明氢的化学键并区分化学吸附和物理吸附的主要工具。在所有经等离子体氢化的WS2纳米颗粒样品中均清楚地识别出以分子形式(H2)吸附的氢。结果表明,所吸附的氢在室温下在高真空条件下通常是稳定的,这表明其在周围大气中的稳定性。开发了DFT模型以模拟WS2纳米颗粒中氢的吸附。该模型考虑了各种吸附位点,并确定了几个WS2结构中被吸附氢的优先位置,证明了理论与实验之间的良好一致性,并提供了优化氢暴露条件和基底材料类型的工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号