首页> 美国卫生研究院文献>other >Optimized Use of Low-Depth Genotyping-by-Sequencing for Genomic Prediction Among Multi-Parental Family Pools and Single Plants in Perennial Ryegrass (Lolium perenne L.)
【2h】

Optimized Use of Low-Depth Genotyping-by-Sequencing for Genomic Prediction Among Multi-Parental Family Pools and Single Plants in Perennial Ryegrass (Lolium perenne L.)

机译:多年生黑麦草(Lolium perenne L.)多亲本家庭库和单株植物中低深度基因分型测序的基因组预测优化应用。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Ryegrass single plants, bi-parental family pools, and multi-parental family pools are often genotyped, based on allele-frequencies using genotyping-by-sequencing (GBS) assays. GBS assays can be performed at low-coverage depth to reduce costs. However, reducing the coverage depth leads to a higher proportion of missing data, and leads to a reduction in accuracy when identifying the allele-frequency at each locus. As a consequence of the latter, genomic relationship matrices (GRMs) will be biased. This bias in GRMs affects variance estimates and the accuracy of GBLUP for genomic prediction (GBLUP-GP). We derived equations that describe the bias from low-coverage sequencing as an effect of binomial sampling of sequence reads, and allowed for any ploidy level of the sample considered. This allowed us to combine individual and pool genotypes in one GRM, treating pool-genotypes as a polyploid genotype, equal to the total ploidy-level of the parents of the pool. Using simulated data, we verified the magnitude of the GRM bias at different coverage depths for three different kinds of ryegrass breeding material: individual genotypes from single plants, pool-genotypes from F2 families, and pool-genotypes from synthetic varieties. To better handle missing data, we also tested imputation procedures, which are suited for analyzing allele-frequency genomic data. The relative advantages of the bias-correction and the imputation of missing data were evaluated using real data. We examined a large dataset, including single plants, F2 families, and synthetic varieties genotyped in three GBS assays, each with a different coverage depth, and evaluated them for heading date, crown rust resistance, and seed yield. Cross validations were used to test the accuracy using GBLUP approaches, demonstrating the feasibility of predicting among different breeding material. Bias-corrected GRMs proved to increase predictive accuracies when compared with standard approaches to construct GRMs. Among the imputation methods we tested, the random forest method yielded the highest predictive accuracy. The combinations of these two methods resulted in a meaningful increase of predictive ability (up to 0.09). The possibility of predicting across individuals and pools provides new opportunities for improving ryegrass breeding schemes.
机译:黑麦草的单株植物,双亲家庭池和多亲家庭池通常根据基因型通过测序(GBS)分析进行基因分型。 GBS分析可在低覆盖深度进行以降低成本。但是,减小覆盖深度会导致丢失数据的比例更高,并且在标识每个位点的等位基因频率时会导致准确性降低。由于后者的结果,基因组关系矩阵(GRM)将产生偏差。 GRM中的这种偏差会影响方差估计和用于基因组预测的GBLUP(GBLUP-GP)的准确性。我们导出了描述低覆盖率测序偏差的方程式,该偏差是对序列读数的二项式采样的影响,并考虑了所考虑样品的任何倍性水平。这使我们能够在一个GRM中合并个体和库的基因型,将库的基因型视为多倍体基因型,等于库的父母的总倍性水平。使用模拟数据,我们验证了三种不同类型的黑麦草育种材料在不同覆盖深度下GRM偏差的大小:单株植物的个体基因型,F2族的库基因型和合成品种的库基因型。为了更好地处理丢失的数据,我们还测试了插补程序,该插补程序适用于分析等位基因频率的基因组数据。使用真实数据评估了偏差校正和估算缺失数据的相对优势。我们检查了一个大型数据集,包括单株植物,F2家族和通过三种GBS分析进行基因分型的合成品种,每种都有不同的覆盖深度,并对它们的抽穗期,抗冠锈性和种子产量进行了评估。交叉验证用于使用GBLUP方法测试准确性,证明了在不同育种材料之间进行预测的可行性。与构建GRM的标准方法相比,偏差校正的GRM被证明可以提高预测准确性。在我们测试的插补方法中,随机森林方法产生了最高的预测准确性。这两种方法的组合导致了预测能力的有意义的提高(高达0.09)。对个体和种群进行预测的可能性为改善黑麦草育种计划提供了新的机会。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号