首页> 美国卫生研究院文献>other >Isotopic evolution of the protoplanetary disk and the building blocks of Earth and Moon
【2h】

Isotopic evolution of the protoplanetary disk and the building blocks of Earth and Moon

机译:原行星盘的同位素演化以及地球和月球的构造块

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Nucleosynthetic isotope variability amongst Solar System objects is commonly used to probe the genetic relationship between meteorite groups and rocky planets, which, in turn, may provide insights into the building blocks of the Earth-Moon system. Using this approach, it is inferred that no primitive meteorite matches the terrestrial composition such that the nature of the disk material that accreted to form the Earth and Moon is unconstrained. This conclusion, however, is based on the assumption that the observed nucleosynthetic variability amongst inner Solar System objects predominantly reflects spatial heterogeneity. Here, we use the isotopic composition of the refractory element calcium to show that the inner Solar System’s nucleosynthetic variability in the mass-independent 48Ca/44Ca ratio (μ48Ca) primarily represents a rapid change in the μ48Ca composition of disk solids associated with early mass accretion to the proto-Sun. In detail, the μ48Ca values of samples originating from the ureilite and angrite parent bodies as well as Vesta, Mars and Earth are positively correlated to the masses of the inferred parent asteroids and planets – a proxy of their accretion timescales – implying a secular evolution of the bulk μ48Ca disk composition in the terrestrial planet-forming region. Individual chondrules from ordinary chondrites formed within 1 Myr of proto-Sun collapse record the full range of inner Solar System μ48Ca compositions, indicating a rapid change in the composition of the disk material. We infer that this secular evolution reflects admixing of pristine outer Solar System material to the thermally-processed inner protoplanetary disk associated with the accretion of mass to the proto-Sun. The indistinguishable μ48Ca composition of the Earth (0.2±3.9 ppm) and Moon (3.7±1.9 ppm) reported here is a prediction of our model if the Moon-forming impact involved protoplanets or precursors that completed their accretion near the end of the disk lifetime.
机译:太阳系天体之间的核合成同位素变异性通常用于探测陨石群与岩石行星之间的遗传关系,这反过来可以提供对月球地球系统构成要素的见解 。使用这种方法,可以推断出没有原始的陨石与地面成分相匹配,从而使形成地球和月球的盘状物质的性质不受约束 。但是,该结论基于这样一个假设,即在太阳系内部各个对象之间观察到的核合成变异主要反映了空间异质性。在这里,我们使用难熔元素钙的同位素组成来表明,在质量独立的 48 Ca / 44 Ca比值(μ 48 Ca)主要表示圆盘固体的μ 48 Ca成分的快速变化,与原太阳的早期质量增加有关。详细说来,来自尿素石和天使晶体母体以及维斯塔,火星和地球的样品的μ 48 Ca值与推断的母体小行星和行星的质量呈正相关–是它们的积聚时标–暗示了在地球行星形成区域中大块μ 48 Ca圆盘成分的长期演化。在1 Myr的原始太阳坍塌 内形成的普通球粒陨石中的各个球粒记录了整个太阳系内部μ 48 Ca组成的范围,表明该太阳系的组成发生了快速变化。磁盘材料。我们推断,这种长期演化反映了原始原始太阳系材料与热处理后的内部原行星盘的混合,这与质量增加到原始太阳有关。此处报道的地球(0.2±3.9 ppm)和月球(3.7±1.9 ppm)的μ 48 Ca成分无法区分,这是对我们的模型的预测,如果形成月球的撞击涉及原行星或已完成的前兆在磁盘寿命即将结束时它们的积聚。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号