首页> 美国卫生研究院文献>other >Microscale mapping of extracellular matrix elasticity of mouse joint cartilage: An approach to extracting bulk elasticity of soft matter with surface roughness
【2h】

Microscale mapping of extracellular matrix elasticity of mouse joint cartilage: An approach to extracting bulk elasticity of soft matter with surface roughness

机译:小鼠关节软骨细胞外基质弹性的微观标测:一种提取具有表面粗糙度的软物质的体积弹性的方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Cartilage is composed of cells and an extracellular matrix, the latter being a composite of a collagen mesh interpenetrated by proteoglycans responsible for tissue osmotic swelling. The matrix composition and structure vary through the tissue depth. Mapping such variability requires tissue sectioning to gain access. The resulting surface roughness, and concomitant proteoglycan loss contribute to large uncertainties in elastic modulus estimates. To extract elasticity values for the bulk matrix which are not obfuscated by the indeterminate surface layer, we developed a novel experimental and data analysis methodology. We analyzed the surface roughness to optimize the probe size, and performed high-resolution (1 µm) elasticity mapping on thin (~12 µm), epiphyseal newborn mouse cartilage sections cut parallel to the bone longitudinal axis or normal to the articular surface. Mild fixation prevented the major proteoglycan loss observed in unfixed specimens but not the stress release that resulted in thickness changes in the sectioned matrix. Our novel data analysis method introduces a virtual contact point as a fitting parameter for the Hertz indentation model that minimizes the effects of surface roughness and corrects for the finite section thickness. Our estimates of cartilage elasticity converge with increasing indentation depth and, unlike previous data interpretations, are consistent with linearly elastic material. A high cell density that leaves narrow matrix septa between cells may cause the underestimation of elastic moduli, whereas fixation probably causes an overestimation. The proposed methodology has broader relevance to nano- and micro-indentation of soft materials with multiple length scales of organization and whenever surface effects (including roughness, electrostatics, van der Waals forces, etc.) become significant.
机译:软骨由细胞和细胞外基质组成,后者是胶原蛋白网的复合物,胶原蛋白网由负责组织渗透性溶胀的蛋白聚糖相互渗透。基质组成和结构随组织深度而变化。映射这种可变性需要组织切片以获取通路。所得的表面粗糙度和伴随的蛋白聚糖损失导致弹性模量估计中的较大不确定性。为了提取未确定的表面层不会混淆的本体矩阵的弹性值,我们开发了一种新颖的实验和数据分析方法。我们分析了表面粗糙度以优化探头尺寸,并在平行于骨纵轴或垂直于关节表面切开的薄(〜12 µm)epi骨新生小鼠软骨切片上进行了高分辨率(1 µm)弹性映射。轻度固定可防止在未固定样本中观察到主要的蛋白聚糖损失,但不能消除导致切片基质厚度变化的应力释放。我们新颖的数据分析方法引入了虚拟接触点作为Hertz压痕模型的拟合参数,从而最大程度地减少了表面粗糙度的影响并校正了有限的截面厚度。我们对软骨弹性的估计随着压痕深度的增加而收敛,并且与以前的数据解释不同,它与线性弹性材料是一致的。高细胞密度会在细胞之间留下狭窄的基质间隔,可能会导致弹性模量的低估,而固定可能会导致高估。所提出的方法与具有多个组织长度尺度的软材料的纳米压痕和微观压痕具有更广泛的相关性,并且只要表面效应(包括粗糙度,静电,范德华力等)变得显着时,该方法就具有更大的相关性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号