首页> 美国卫生研究院文献>other >Assessing the Impact of Spatial Resolution on the Estimation of Leaf Nitrogen Concentration Over the Full Season of Paddy Rice Using Near-Surface Imaging Spectroscopy Data
【2h】

Assessing the Impact of Spatial Resolution on the Estimation of Leaf Nitrogen Concentration Over the Full Season of Paddy Rice Using Near-Surface Imaging Spectroscopy Data

机译:利用近地表成像光谱数据评估空间分辨率对水稻全季叶氮含量估算的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Timely monitoring nitrogen status of rice crops with remote sensing can help us optimize nitrogen fertilizer management and reduce environmental pollution. Recently, the use of near-surface imaging spectroscopy is emerging as a promising technology that can collect hyperspectral images with spatial resolutions ranging from millimeters to decimeters. The spatial resolution is crucial for the efficiency in the image sampling across rice plants and the separation of leaf signals from the background. However, the optimal spatial resolution of such images for monitoring the leaf nitrogen concentration (LNC) in rice crops remains unclear. To assess the impact of spatial resolution on the estimation of rice LNC, we collected ground-based hyperspectral images throughout the entire growing season over 2 consecutive years and generated ten sets of images with spatial resolutions ranging from 1.3 to 450 mm. These images were used to determine the sensitivity of LNC prediction to spatial resolution with three groups of vegetation indices (VIs) and two multivariate methods Gaussian Process regression (GPR) and Partial least squares regression (PLSR). The reflectance spectra of sunlit-, shaded-, and all-leaf leaf pixels separated from background pixels at each spatial resolution were used to predict LNC with VIs, GPR and PLSR, respectively. The results demonstrated all-leaf pixels generally exhibited more stable performance than sunlit- and shaded-leaf pixels regardless of estimation approaches. The predictions of LNC required stage-specific LNC~VI models for each vegetative stage but could be performed with a single model for all the reproductive stages. Specifically, most VIs achieved stable performances from all the resolutions finer than 14 mm for the early tillering stage but from all the resolutions finer than 56 mm for the other stages. In contrast, the global models for the prediction of LNC across the entire growing season were successfully established with the approaches of GPR or PLSR. In particular, GPR generally exhibited the best prediction of LNC with the optimal spatial resolution being found at 28 mm. These findings represent significant advances in the application of ground-based imaging spectroscopy as a promising approach to crop monitoring and understanding the effects of spatial resolution on the estimation of rice LNC.
机译:通过遥感及时监测水稻作物的氮素状况,可以帮助我们优化氮肥管理并减少环境污染。近来,近表面成像光谱学的使用正在成为一种有前途的技术,该技术可以收集具有从毫米到分米的空间分辨率的高光谱图像。空间分辨率对于跨水稻植物进行图像采样以及将树叶信号与背景分离的效率至关重要。然而,用于监测稻米中叶氮浓度(LNC)的此类图像的最佳空间分辨率仍不清楚。为了评估空间分辨率对水稻LNC估算的影响,我们在连续2年的整个生长季节中收集了地面高光谱图像,并生成了十组图像,其空间分辨率范围为1.3至450 mm。这些图像用于确定LNC预测对具有三组植被指数(VI)和两种多元方法高斯过程回归(GPR)和偏最小二乘回归(PLSR)的空间分辨率的敏感性。在每个空间分辨率下,与背景像素分开的阳光,阴影和全叶叶子像素的反射光谱分别用于预测VI,GPR和PLSR的LNC。结果表明,无论采用哪种估算方法,全叶像素通常都比阳光和阴影叶像素表现出更稳定的性能。对LNC的预测需要每个营养阶段的特定阶段LNC-VI模型,但可以对所有生殖阶段使用单个模型进行预测。具体来说,大多数VI在分ing期早期的所有分辨率均小于14 mm,但在其他阶段的所有分辨率均小于56 mm时,均获得了稳定的性能。相反,使用GPR或PLSR方法成功建立了整个生长季节LNC预测的全球模型。特别是,GPR通常表现出对LNC的最佳预测,并在28 mm处发现最佳空间分辨率。这些发现代表了在地面成像光谱学应用中的重大进展,该方法是一种有前途的作物监测方法,并了解空间分辨率对水稻LNC估算的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号