首页> 美国卫生研究院文献>other >Biodegradation and Biotransformation of Indole: Advances and Perspectives
【2h】

Biodegradation and Biotransformation of Indole: Advances and Perspectives

机译:吲哚的生物降解和生物转化的研究进展与展望

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Indole is long regarded as a typical N-heterocyclic aromatic pollutant in industrial and agricultural wastewater, and recently it has been identified as a versatile signaling molecule with wide environmental distributions. An exponentially growing number of researches have been reported on indole due to its significant roles in bacterial physiology, pathogenesis, animal behavior and human diseases. From the viewpoint of both environmental bioremediation and biological studies, the researches on metabolism and fates of indole are important to realize environmental treatment and illuminate its biological function. Indole can be produced from tryptophan by tryptophanase in many bacterial species. Meanwhile, various bacterial strains have obtained the ability to transform and degrade indole. The characteristics and pathways for indole degradation have been investigated for a century, and the functional genes for indole aerobic degradation have also been uncovered recently. Interestingly, many oxygenases have proven to be able to oxidize indole to indigo, and this historic and motivating case for biological applications has attracted intensive attention for decades. Herein, the bacteria, enzymes and pathways for indole production, biodegradation and biotransformation are systematically summarized, and the future researches on indole-microbe interactions are also prospected.
机译:长期以来,吲哚被认为是工业和农业废水中的典型N-杂环芳香族污染物,最近已被确认为具有广泛环境分布的通用信号分子。由于吲哚在细菌生理学,发病机理,动物行为和人类疾病中的重要作用,因此已报道了成倍增长的对吲哚的研究。从环境生物修复和生物学研究的角度出发,对吲哚代谢和代谢的研究对于实现环境处理和阐明其生物学功能具有重要意义。在许多细菌物种中,色氨酸可由色氨酸酶从色氨酸产生。同时,各种细菌菌株已经获得了转化和降解吲哚的能力。吲哚降解的特征和途径已经研究了一个世纪,最近还发现了吲哚有氧降解的功能基因。有趣的是,许多加氧酶已被证明能够将吲哚氧化为靛蓝,并且这种具有历史意义和积极意义的生物学应用案例几十年来引起了广泛关注。在本文中,系统地总结了吲哚生产,生物降解和生物转化的细菌,酶和途径,并展望了未来吲哚-微生物相互作用的研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号