首页> 美国卫生研究院文献>other >Fractal and Multifractal Properties of Electrographic Recordings of Human Brain Activity: Toward Its Use as a Signal Feature for Machine Learning in Clinical Applications
【2h】

Fractal and Multifractal Properties of Electrographic Recordings of Human Brain Activity: Toward Its Use as a Signal Feature for Machine Learning in Clinical Applications

机译:人脑活动的电子照相记录的分形和多重分形特性:试图将其用作临床应用中机器学习的信号特征

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The quantification of brain dynamics is essential to its understanding. However, the brain is a system operating on multiple time scales, and characterization of dynamics across time scales remains a challenge. One framework to study such dynamics is that of fractal geometry; and currently there exist several methods for the study of brain dynamics using fractal geometry. We aim to highlight some of the practical challenges of applying fractal geometry to brain dynamics—and as a putative feature for machine learning applications, and propose solutions to enable its wider use in neuroscience. Using intracranially recorded electroencephalogram (EEG) and simulated data, we compared monofractal and multifractal methods with regards to their sensitivity to signal variance. We found that both monofractal and multifractal properties correlate closely with signal variance, thus not being a useful feature of the signal. However, after applying an epoch-wise standardization procedure to the signal, we found that multifractal measures could offer non-redundant information compared to signal variance, power (in different frequency bands) and other established EEG signal measures. We also compared different multifractal estimation methods to each other in terms of reliability, and we found that the Chhabra-Jensen algorithm performed best. Finally, we investigated the impact of sampling frequency and epoch length on the estimation of multifractal properties. Using epileptic seizures as an example event in the EEG, we show that there may be an optimal time scale (i.e., combination of sampling frequency and epoch length) for detecting temporal changes in multifractal properties around seizures. The practical issues we highlighted and our suggested solutions should help in developing robust methods for the application of fractal geometry in EEG signals. Our analyses and observations also aid the theoretical understanding of the multifractal properties of the brain and might provide grounds for new discoveries in the study of brain signals. These could be crucial for the understanding of neurological function and for the developments of new treatments.
机译:大脑动力学的量化对其理解至关重要。然而,大脑是一个在多个时间尺度上运行的系统,跨时间尺度的动力学特征描述仍然是一个挑战。研究这种动力学的一个框架是分形几何。目前存在几种利用分形几何学研究脑动力学的方法。我们旨在强调将分形几何应用于脑动力学的一些实际挑战,并作为机器学习应用程序的推定功能,并提出解决方案以使其在神经科学中得到更广泛的应用。使用颅内记录的脑电图(EEG)和模拟数据,我们比较了单分形和多分形方法对信号方差的敏感性。我们发现单分形和多分形特性都与信号方差密切相关,因此不是信号的有用功能。但是,在对信号应用时代标准化过程之后,我们发现与信号方差,功率(在不同频带中)和其他已建立的EEG信号测量相比,多重分形测量可以提供非冗余信息。我们还在可靠性方面对不同的多重分形估计方法进行了比较,发现Chhabra-Jensen算法表现最佳。最后,我们研究了采样频率和历元长度对多重分形特性估计的影响。使用癫痫发作作为EEG中的示例事件,我们表明可能存在最佳时标(即采样频率和时期长度的组合)来检测癫痫发作周围的多重分形特性的时间变化。我们强调的实际问题和建议的解决方案应有助于开发在分形几何体中应用脑电信号的鲁棒方法。我们的分析和观察还有助于对大脑的多重分形特性进行理论理解,并可能为脑信号研究中的新发现提供依据。这些对于理解神经功能和开发新疗法可能至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号