首页> 美国卫生研究院文献>Journal of Insect Science >Magnetic resonance imaging in entomology: a critical review
【2h】

Magnetic resonance imaging in entomology: a critical review

机译:昆虫学中的磁共振成像:重要评论

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Magnetic resonance imaging (MRI) enables in vivo imaging of organisms. The recent development of the magnetic resonance microscope (MRM) has enabled organisms within the size range of many insects to be imaged. Here, we introduce the principles of MRI and MRM and review their use in entomology. We show that MRM has been successfully applied in studies of parasitology, development, metabolism, biomagnetism and morphology, and the advantages and disadvantages relative to other imaging techniques are discussed. In addition, we illustrate the images that can be obtained using MRM. We conclude that although MRM has significant potential, further improvements to the technique are still desirable if it is to become a mainstream imaging technology in entomology.
>Abbreviation:
>
CSI
chemical shift imaging. The dependence of the resonance frequency of a nucleus on the chemical binding of the atom or molecule in which it is contained.
(N)MRI
(nuclear) magnetic resonance imaging
MRM
magnetic resonance microscopy
Voxel
A contraction for volume element, which is the basic unit of MR reconstruction; represented as a pixel in the display of the MR image.
class="kwd-title">Keywords: Magnetic resonance microscopy, MRI, MRM, Vespula vulgaris, Dinoponera quadriceps class="head no_bottom_margin" id="s1title" style="text-transform: uppercase;">IntroductionNuclear magnetic resonance imaging (NMRI), usually shortened to magnetic resonance imaging, (MRI), is a non-invasive internal imaging technique used extensively in clinical diagnosis and medical research (; ). As well as its ability to capture high quality in vitro images, MRI can be performed in vivo without harmful effects (). Here we introduce the principles of magnetic resonance imaging and review its use in entomology. We illustrate the types of images that can be obtained from entomological material both in vitro and in vivo, and we discuss the advantages and disadvantages of MRI over conventional imaging techniques.Magnetic resonance imaging generally utilizes interactions between protons (1H) in liquid phase molecules (e.g. water and lipids) and a magnetic fields. These arise because the protons have a weak magnetic moment, and so behave like tiny magnets. The sample is placed within the bore of a powerful, but biologically harmless, magnet (typically producing a field of 0.5 – 2 Tesla, although magnets of up to 17 Tesla strength may be used; as a reference, the Earth's magnetic field is ca. 5 × 10−5 Tesla) and radio-frequency pulses are applied to it. The radio-frequency pulses that must have the appropriate resonant frequency known as the Larmor frequency, interact with protons in the sample, causing them to absorb energy and jump to an excited state. As a result, the protons in the sample coherently precess about the applied magnetic field and generate radio waves at the Larmor frequency. This radio-frequency emission is picked up by a receiver coil and the resulting NMR signal is used as the basis for imaging. The NMR signal changes over time depending on the protons' local microenvironment. For example, protons in fats have a different microenvironment than those in water, and thus produce a signal of different frequency. The differences in NMR signals produced by different tissues provide contrast in the image produced. Contrast can also be manipulated by changing the radio-frequency pulse sequence parameters, principally the repetition time and the echo time. In addition to protons, nuclei such as 13C and 31P, also exhibit magnetic resonance and may be used as the basis for imaging.By applying three orthogonal magnetic field gradients, it is possible to determine the resonance signal from individual volume elements, known as voxels, within the sample. Computer integration and transformation of the signals received from the sample allows a two-dimensional map of proton density to be constructed, which can be visualized as a virtual “slice” through the sample. The resolution of the image is determined by the size of the voxels. Multiple two-dimensional slices through a sample can also be acquired in different ways to provide a three-dimensional image.
机译:磁共振成像(MRI)可以对生物体进行体内成像。磁共振显微镜(MRM)的最新发展已经使许多昆虫大小范围内的生物得以成像。在这里,我们介绍MRI和MRM的原理,并回顾它们在昆虫学中的用途。我们表明,MRM已成功地应用于寄生虫学,发育,代谢,生物磁性和形态学的研究,并讨论了相对于其他成像技术的优缺点。另外,我们说明了可以使用MRM获得的图像。我们得出的结论是,尽管MRM具有巨大的潜力,但要使其成为昆虫学的主流成像技术,仍然需要对该技术进行进一步的改进。
>缩写:
> CSI
化学位移成像。原子核的共振频率对其中所包含的原子或分子的化学键的依赖性。 (N)MRI
(核)磁共振成像 MRM
磁共振显微镜 Voxel
体积元素的收缩,是MR重建的基本单位。 class =“ kwd-title”>关键字:磁共振波谱,MRI,MRM,寻常型小黄蜂,四头恐龙(Dinoponera quadriceps)< h2 class =“ head no_bottom_margin” id =“ s1title” style =“ text-transform:uppercase;”>简介核磁共振成像(NMRI)(通常简称为磁共振成像,MRI)是一种侵入式内部成像技术广泛用于临床诊断和医学研究(;)。 MRI不仅可以捕获高质量的体外图像,而且可以在体内进行MRI,而不会产生有害影响()。在这里,我们介绍磁共振成像的原理并回顾其在昆虫学中的应用。我们说明了可以从昆虫学材料体内和体外获得的图像类型,并讨论了MRI与常规成像技术相比的优缺点。磁共振成像通常利用质子之间的相互作用( 1 H)在液相分子(例如水和脂质)和磁场中。之所以会出现这种情况,是因为质子的磁矩很弱,因此它们的行为就像微小的磁体。样品放置在强大但对生物无害的磁体的孔中(通常可以产生0.5 – 2 Tesla的磁场,尽管可以使用强度最高为17 Tesla的磁体;作为参考,地球的磁场大约为。 5×10 −5 Tesla)并施加射频脉冲。必须具有适当的共振频率(称为拉莫尔频率)的射频脉冲与样品中的质子相互作用,从而使它们吸收能量并跃迁为激发态。结果,样品中的质子围绕所施加的磁场相干进动,并以拉莫尔频率产生无线电波。射频辐射由接收线圈接收,所得的NMR信号用作成像的基础。 NMR信号随时间变化,这取决于质子的局部微环境。例如,脂肪中的质子与水中的质子具有不同的微环境,因此产生不同频率的信号。由不同组织产生的NMR信号的差异在产生的图像中提供了对比度。还可以通过更改射频脉冲序列参数(主要是重复时间和回波时间)来控制对比度。除了质子外,诸如 13 C和 31 P的原子核也表现出磁共振,可以用作成像的基础。通过应用三个正交磁场梯度,可以从样本中的各个体素(称为体素)确定共振信号。从样品接收的信号的计算机集成和转换允许构造质子密度的二维图,该图可以可视化为穿过样品的虚拟“切片”。图像的分辨率取决于体素的大小。也可以以不同的方式获取通过样本的多个二维切片,以提供三维图像。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号