首页> 美国卫生研究院文献>Journal of Insect Science >Genetic differentiation among geographic populations of Gonatocerus ashmeadi the predominant egg parasitoid of the glassy-winged sharpshooter Homalodisca coagulata
【2h】

Genetic differentiation among geographic populations of Gonatocerus ashmeadi the predominant egg parasitoid of the glassy-winged sharpshooter Homalodisca coagulata

机译:灰翅性神枪手的主要卵寄生虫(Galatocerus ashmeadi)地理种群之间的遗传分化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The aim of genetically comparing different populations of the same species of natural enemies is to identify the strain that is most adapted to the environment where it will be released. In the present study, Inter-Simple Sequence Repeat-Polymerase Chain Reaction (ISSR–PCR) was utilized to estimate the population genetic structure of Gonatocerus ashmeadi (Girault) (Hymenoptera: Mymaridae), the predominant egg parasitoid of Homalodisca coagulata (Say) (Homoptera:Cicadellidae), the glassy-winged sharpshooter. Six populations from throughout the U.S. and a population from Argentina identified as near G. ashmeadi were analyzed. Four populations (California; San Antonio, Texas; Weslaco, Texas [WTX-2]; and Florida) were field collected and two (Louisiana and Weslaco, Texas [WTX-1]) were reared. Three ISSR–PCR reactions were pooled to generate 41 polymorphic markers among the six U.S. populations. Nei's expected heterozygosity values (h), including the reared population from Louisiana, were high (9.01–14.3%) for all populations, except for a reared population from WTX-1 (2.9%). The total genetic diversity value (Ht) for the field populations was high (23%). Interestingly, the Florida population that was collected from one egg mass (siblings) generated the greatest number of polymorphic markers (20) and was observed with the highest gene diversity value (14.3%). All populations, except WTX-2 generated population-specific markers. Comparison of genetic differentiation estimates, which evaluate the degree of genetic subdivision, demonstrated good agreement between GST and θ values, 0.38 and 0.50, respectively for field populations, and 0.44 and 0.50, respectively for all populations. Genetic divergence (D) indicated that the WTX-1 population was the most differentiated. Average D results from the Argentina population support the taxonomic data that it is a different species. The present results estimate the population genetic structure of G. ashmeadi, demonstrating genetic divergence and restricted gene flow (Nm = 0.83) among populations. These results are of interest to the Pierce's disease/glassy-winged sharpshooter biological control program because the key to successful biological control may not be in another species, but instead in different geographic races or biotypes.
>Abbreviations:
>
ISSR–PCR
Inter-Simple Sequence Repeat-Polymerase Chain Reaction
class="kwd-title">Keywords: DNA fingerprinting, genetic differentiation, grapevines, molecular markers, natural enemies, Pierce's disease, polymorphic loci, population genetics class="head no_bottom_margin" id="s1title" style="text-transform: uppercase;">IntroductionGonatocerus ashmeadi (Girault) (Hymenoptera: Mymaridae) is a primary egg parasitoid of Homalodisca coagulata (Say) (Homoptera: Cicadellidae), the glassy-winged sharpshooter (). A survey conducted by in California, Florida, and Louisiana concluded that this mymarid wasp was the predominant or the most common na tural enemy of H. coagulata. A biological control program is currently in progress in California against H. coagulata because this xylem feeding leafhopper is a serious economic pest that vectors a strain of Xylella fastidiosa, a bacterium that causes Pierce's disease in grapevines (Vitis vinifera and V. labrusca) (). H. coagulata are native to the southern United States, ranging from Florida to Texas and northern Mexico (; ; ; ). Within the last 10 years, H. coagulata have established in southern California where they pose a serious threat to the wine and table grape industry ().Studies of allele or marker frequencies in naturally occurring parasitoid populations are important, not only for identifying genetic variation of potential benefit in the selection and screening of biological control organisms, but also for the detection of genetic markers indicative of specific biological traits or geographic origins. In addition, the recognition of intraspecific variation can be as crucial for the success of biological control programs as is sound species determination. Populations of parasitoids from distinct geographical regions may differ in relevant biological characteristics of importance to biological control (; ; ). An aim of genetically comparing different populations of the same species of natural enemies is to identify the strain that is most adapted to the environment where it will be released (). In other words, the key to successful biological control may not be in another species, but instead in different geographic races or biotypes of one species (). Laboratory populations of parasitoids are maintained for three main purposes: to provide material for research into their basic biology and behavior, to meet quarantine requirements, and to mass-rear insects for release in biological control programs (; ; ). Reliable methods are needed for distinguishing various exotic strains of these biological control agents from those indigenous to the U.S., including parasitoids from different states within the U.S. Release of unidentified and uncharacterized strains can make it difficult to document their establishment and dispersal. Therefore, genetic typing of strains prior to their release in the field is highly desirable (href="#i1536-2442-005-02-0001-narang2" rid="i1536-2442-005-02-0001-narang2" class=" bibr popnode">Narang et al. 1993b). Molecular methods are also needed to monitor the quality of laboratory cultures, to detect development of major deviations in genetic composition from that existing in field populations, and for the detection of cross-contamination between cultures of sibling species (href="#i1536-2442-005-02-0001-powell1" rid="i1536-2442-005-02-0001-powell1" class=" bibr popnode">Powell and Walton 1989; href="#i1536-2442-005-02-0001-menken1" rid="i1536-2442-005-02-0001-menken1" class=" bibr popnode">Menken and Ulenberg 1987; href="#i1536-2442-005-02-0001-narang2" rid="i1536-2442-005-02-0001-narang2" class=" bibr popnode">Narang et al. 1993b; href="#i1536-2442-005-02-0001-hopper1" rid="i1536-2442-005-02-0001-hopper1" class=" bibr popnode">Hopper et al. 1993; href="#i1536-2442-005-02-0001-unruh3" rid="i1536-2442-005-02-0001-unruh3" class=" bibr popnode">Unruh and Woolley 1999).A sensitive approach for obtaining polymorphic DNA markers is based on the use of simple sequence repeats (SSR) or microsatellites. Microsatellites are ubiquitous in eukaryotic genomes and can be found in both protein-coding and noncoding regions (href="#i1536-2442-005-02-0001-toth1" rid="i1536-2442-005-02-0001-toth1" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_109490431">Tóth et al. 2000). Microsatellites are widely used as genetic markers because they are co-dominant, multiallelic, easily scored, and highly polymorphic, although drawbacks for their use are the time and cost required to characterize them (href="#i1536-2442-005-02-0001-karp1" rid="i1536-2442-005-02-0001-karp1" class=" bibr popnode">Karp and Edwards 1997). However, a DNA fingerprinting procedure, Inter-Simple Sequence Repeat-Polymerase Chain Reaction (ISSR–PCR) (href="#i1536-2442-005-02-0001-zietkiewicz1" rid="i1536-2442-005-02-0001-zietkiewicz1" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_109490436">Zietkiewicz et al. 1994), including adding a primer pair to the reaction (pp-ISSR–PCR) (href="#i1536-2442-005-02-0001-prevost1" rid="i1536-2442-005-02-0001-prevost1" class=" bibr popnode">Prevost and Wilkinson 1999; href="#i1536-2442-005-02-0001-cekic1" rid="i1536-2442-005-02-0001-cekic1" class=" bibr popnode">Cekic et al. 2001), permits detection of DNA variation in microsatellites without the need to isolate and sequence specific DNA fragments. The approach for this technique involves amplification with oligonucleotide primers corresponding directly to random SSR sites. This involves the use of 5′-anchored or compound ISSR primers where the anchor serves to fix the annealing of the primer to a single position of the target site, thus resulting in a low level of slippage during amplification. Many classes of microsatellite repeat motifs have been identified, though the class most abundant in eukaryotic genomes is the CA-repeat. The presence of these repeat motifs in high copy number and their dispersion throughout the genome of all eukaryotes tested has been demonstrated by earlier studies (href="#i1536-2442-005-02-0001-hamada1" rid="i1536-2442-005-02-0001-hamada1" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_333682803">Hamada et al. 1982; href="#i1536-2442-005-02-0001-tautz1" rid="i1536-2442-005-02-0001-tautz1" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_109490443">Tautz and Renz 1984; href="#i1536-2442-005-02-0001-toth1" rid="i1536-2442-005-02-0001-toth1" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_109490435">Tóth et al. 2000). Therefore, because of their high density, a few oligonucleotides complementary to these CA-repeat motifs can be used to target a significant portion of the genome and reveal highly polymorphic banding patterns (href="#i1536-2442-005-02-0001-zietkiewicz1" rid="i1536-2442-005-02-0001-zietkiewicz1" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_109490437">Zietkiewicz et al. 1994).To gain an understanding of the population genetics of G. ashmeadi, molecular genetic markers were developed by the ISSR–PCR DNA fingerprinting procedure. Recently, we developed DNA markers for H. coagulata for the purpose of estimating genetic variation in natural populations (href="#i1536-2442-005-02-0001-deleon1" rid="i1536-2442-005-02-0001-deleon1" class=" bibr popnode">de León and Jones 2004). We screened and compared four DNA fingerprinting procedures and determined that procedures incorporating SSR or microsatellites were the most sensitive with H. coagulata template. To this end, the specific objectives of the present study were to 1) estimate genetic variation or gene diversity within and among populations, 2) estimate the population genetic structure, 3) determine whether ISSR–PCR was sensitive enough to identify diagnostic markers in geographic populations, and 4) confirm the species identification of a population of egg parasitoids from Argentina identified as near G. ashmeadi. We demonstrated the ability of the ISSR–PCR procedure with compound and 5′-anchored ISSR primers, including combining them, to generate polymorphic markers and estimate geographic variation in G. ashmeadi populations.
机译:从基因上比较同一天敌物种的不同种群的目的是确定最适合其释放环境的菌株。在本研究中,利用简单序列间重复聚合酶链反应(ISSR–PCR)估算了Gomotocerus ashmeadi(Girault)(Hymenoptera:Mymaridae)的种群遗传结构,这是Homalodisca凝固菌(Say)的主要卵类寄生虫。同翅目:Cicadellidae),有玻璃状翅膀的神射手。分析了来自美国各地的六个人口和被确定为靠近G. ashmeadi的阿根廷人口。采集了四个种群(加利福尼亚州;德克萨斯州圣安东尼奥市;德克萨斯州韦斯拉科[WTX-2]和佛罗里达州),并饲养了两个种群(路易斯安那州路易斯安那州和韦斯拉科[WTX-1])。汇总了三个ISSR-PCR反应,以在六个美国人群中产生41个多态性标记。 Nei的预期杂合度值(h),包括从路易斯安那州饲养的人口,除从WTX-1饲养的人口(2.9%)之外,所有人口都很高(9.01-14.3%)。田间种群的总遗传多样性值(Ht)很高(23%)。有趣的是,从一个卵团(兄弟姐妹)收集的佛罗里达种群产生最多数量的多态性标记(20),并观察到最高的基因多样性值(14.3%)。除WTX-2外,所有种群均产生种群特异性标记。评估基因细分程度的遗传分化估计值的比较表明,田间种群的GST和θ值分别为0.38和0.50,所有种群的分别为0.44和0.50有很好的一致性。遗传差异(D)表明,WTX-1群体分化程度最高。来自阿根廷种群的平均D结果支持了分类数据,即它是另一个物种。目前的结果估计了G. ashmeadi的种群遗传结构,证明了种群之间的遗传差异和受限的基因流(Nm = 0.83)。这些结果对于皮尔斯氏病/玻翅神射手生物防治计划很有意义,因为成功进行生物防治的关键可能不在另一个物种中,而是在不同的地理种族或生物类型中。
>缩写:
> ISSR–PCR
简单序列间重复聚合酶连锁反应 class =“ kwd-title”>关键字: DNA指纹图谱,遗传分化,葡萄树,分子标记,天敌,皮尔斯氏病,多态性位点,种群遗传学 class =“ head no_bottom_margin” id =“ s1title” style =“ text-transform:uppercase;”>简介 Gonatocerus ashmeadi(Girault)(膜翅目:Mymaridae)是Homalodisca gestata(Say)(Homoptera)的主要卵寄生虫。 :Cicadellidae),玻璃状翅膀的神枪手()。在加利福尼亚州,佛罗里达州和路易斯安那州进行的一项调查得出的结论是,这种真菌性黄蜂是凝固嗜血杆菌的主要或最常见的自然敌人。目前,加利福尼亚州正在开展一项针对血凝素酶的生物防治计划,因为这种以木质部为食的叶蝉是一种严重的经济害虫,可携带一种可导致葡萄藤中皮尔斯氏病的细菌克氏杆菌(Vitis vinifera和V. labrusca)()。 。凝结线虫原产于美国南部,范围从佛罗里达州到德克萨斯州和墨西哥北部(;;;)。在过去的10年中,凝结链球菌在加利福尼亚州南部建立,对葡萄酒和食用葡萄业构成了严重威胁(99)。自然寄生虫种群中的等位基因或标记频率研究不仅对于鉴定遗传变异也很重要。在选择和筛选生物防治生物中可能具有潜在的好处,而且还可以用于检测指示特定生物学特性或地理起源的遗传标记。另外,种内变异的识别对于生物控制程序的成功至关重要,这与声音种类的确定一样重要。来自不同地理区域的寄生虫种群在对生物学控制具有重要意义的相关生物学特征上可能会有所不同(;;)。从基因上比较同一天敌物种的不同种群的目的是确定最适合其释放环境的菌株。换句话说,成功进行生物控制的关键可能不在另一个物种中,而是在一个物种的不同地理种族或生物类型中。实验室寄生虫种群的维护主要用于三个目的:为研究其基本生物学和行为提供材料,满足检疫要求,以及将大量后代昆虫释放到生物防治程序中(;;)。需要可靠的方法来区分这些生物防治剂的各种外来菌株与美国本土的菌株,包括美国境内不同州的寄生虫。释放未鉴定和未表征的菌株可能难以证明它们的建立和传播。因此,非常需要在野外释放菌株之前对其进行基因分型(href =“#i1536-2442-005-02-0001-narang2” rid =“ i1536-2442-005-02-0001-narang2” class =“ bibr popnode”> Narang等,1993b )。还需要分子方法来监测实验室培养的质量,检测与田间种群中存在的遗传组成的主要差异,以及检测同胞物种之间的交叉污染(href =“#i1536 -2442-005-02-0001-powell1“ rid =” i1536-2442-005-02-0001-powell1“ class =” bibr popnode“>鲍威尔和沃尔顿,1989年; href =”#i1536- 2442-005-02-0001-menken1“ rid =” i1536-2442-005-02-0001-menken1“ class =” bibr popnode“> Menken和Ulenberg 1987 ; href =”#i1536-2442 -005-02-0001-narang2“ rid =” i1536-2442-005-02-0001-narang2“ class =” bibr popnode“> Narang et al。1993b ; href =”#i1536-2442 -005-02-0001-hopper1“ rid =” i1536-2442-005-02-0001-hopper1“ class =” bibr popnode“> Hopper et al。1993 ; href =”#i1536-2442 -005-02-0001-unruh3“ rid =” i1536-2442-005-02-0001-unruh3“ class =” bibr popnode“> Unruh and Woolley 1999 )。获得多态性DNA标记的一种敏感方法是基于简单序列的使用重复(SSR)或微卫星。微卫星在真核基因组中无处不在,可以在蛋白质编码区和非编码区中找到(href =“#i1536-2442-005-02-0001-toth1” rid =“ i1536-2442-005-02-0001- toth1“ class =” bibr popnode tag_hotlink tag_tooltip“ id =” __ tag_109490431“>Tóthet al。2000 )。微卫星由于其共同优势,多等位基因,易刻痕和高度多态性而被广泛用作遗传标记,尽管使用它们的缺点是表征它们所需的时间和成本(href =“#i1536-2442-005- 02-0001-karp1“ rid =” i1536-2442-005-02-0001-karp1“ class =” bibr popnode“> Karp and Edwards 1997 。但是,有一个DNA指纹识别程序,即简单序列间重复聚合酶链反应(ISSR–PCR)(href =“#i1536-2442-005-02-0001-zietkiewicz1” rid =“ i1536-2442-005-02 -0001-zietkiewicz1“ class =” bibr popnode tag_hotlink tag_tooltip“ id =” __ tag_109490436“> Zietkiewicz等,1994 ),包括在反应中添加引物对(pp-ISSR–PCR)(href = “#i1536-2442-005-02-0001-prevost1” rid =“ i1536-2442-005-02-0001-prevost1” class =“ bibr popnode”> Prevost和Wilkinson 1999 ; href =“ #i1536-2442-005-02-0001-cekic1“ rid =” i1536-2442-005-02-0001-cekic1“ class =” bibr popnode“> Cekic等人2001 ),可以检测DNA无需分离和测序特定DNA片段的微卫星变异。该技术的方法涉及用直接对应于随机SSR位点的寡核苷酸引物进行扩增。这涉及使用5'锚定或复合ISSR引物,其中锚点用于将引物的退火固定在目标位点的单个位置,因此导致扩增过程中的滑动水平较低。尽管真核基因组中最丰富的一类是CA重复序列,但已经鉴定出许多类的微卫星重复基序。早先的研究证明了这些重复基序的高拷贝数的存在以及它们在所有真核生物基因组中的分散性(href =“#i1536-2442-005-02-0001-hamada1” rid =“ i1536- 2442-005-02-0001-hamada1“ class =” bibr popnode tag_hotlink tag_tooltip“ id =” __ tag_333682803“> Hamada等人1982 ; href =”#i1536-2442-005-02-0001- tautz1“ rid =” i1536-2442-005-02-0001-tautz1“ class =” bibr popnode tag_hotlink tag_tooltip“ id =” __ tag_109490443“> Tautz和Renz 1984 ; href =”#i1536-2442- 005-02-0001-toth1“ rid =” i1536-2442-005-02-0001-toth1“ class =” bibr popnode tag_hotlink tag_tooltip“ id =” __ tag_109490435“> Toth等人2000 )。因此,由于它们的高密度,可以将与这些CA重复基序互补的一些寡核苷酸用于靶向基因组的重要部分,并揭示高度多态的条带模式(href =“#i1536-2442-005-02- 0001-zietkiewicz1“ rid =” i1536-2442-005-02-0001-zietkiewicz1“ class =” bibr popnode tag_hotlink tag_tooltip“ id =” __ tag_109490437“> Zietkiewicz等,1994 )。 G. ashmeadi的种群遗传学,通过ISSR-PCR DNA指纹图谱程序开发了分子遗传标记。最近,我们为 H开发了DNA标记。为了估计自然种群中的遗传变异(href =“#i1536-2442-005-02-0001-deleon1” rid =“ i1536-2442-005-02-0001-deleon1”类=“ bibr popnode”> deLeón和Jones 2004 )。我们筛选并比较了四种DNA指纹图谱程序,并确定结合了SSR或微卫星的程序对H最为敏感。凝固模板模板。为此,本研究的具体目标是:1)估计群体内部和群体之间的遗传变异或基因多样性,2)估计群体的遗传结构,3)确定ISSR-PCR是否足够灵敏以鉴定地理区域中的诊断标记,和4)确认来自阿根廷的卵类寄生虫种群的物种鉴定,该寄生虫被鉴定为接近 G。 ashmeadi 。我们证明了使用化合物和5'锚定的ISSR引物(包括将其组合)进行ISSR-PCR程序生成多态性标记并估算 G中地理变异的能力。 ashmeadi 人口。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号