首页> 美国卫生研究院文献>Genome Biology and Evolution >Genome Evolution by Matrix Algorithms: Cellular Automata Approach to Population Genetics
【2h】

Genome Evolution by Matrix Algorithms: Cellular Automata Approach to Population Genetics

机译:矩阵算法的基因组进化:细胞自动机方法的群体遗传学。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Mammalian genomes are replete with millions of polymorphic sites, among which those genetic variants that are colocated on the same chromosome and exist close to one another form blocks of closely linked mutations known as haplotypes. The linkage within haplotypes is constantly disrupted due to meiotic recombination events. Whole ensembles of such numerous haplotypes are subjected to evolutionary pressure, where mutations influence each other and should be considered as a whole entity—a gigantic matrix, unique for each individual genome. This idea was implemented into a computational approach, named Genome Evolution by Matrix Algorithms (GEMA) to model genomic changes taking into account all mutations in a population. GEMA has been tested for modeling of entire human chromosomes. The program can precisely mimic real biological processes that have influence on genome evolution such as: 1) Authentic arrangements of genes and functional genomic elements, 2) frequencies of various types of mutations in different nucleotide contexts, and 3) nonrandom distribution of meiotic recombination events along chromosomes. Computer modeling with GEMA has demonstrated that the number of meiotic recombination events per gamete is among the most crucial factors influencing population fitness. In humans, these recombinations create a gamete genome consisting on an average of 48 pieces of corresponding parental chromosomes. Such highly mosaic gamete structure allows preserving fitness of population under the intense influx of novel mutations (40 per individual) even when the number of mutations with deleterious effects is up to ten times more abundant than those with beneficial effects.
机译:哺乳动物基因组中充满了数百万个多态性位点,其中位于同一染色体上且彼此接近的那些遗传变异体形成了紧密连接的突变块,称为单倍型。由于减数分裂重组事件,单倍型内的连接不断被破坏。如此众多的单倍型的整体受到进化压力的影响,突变之间会相互影响,因此应视为一个整体,一个巨大的矩阵,每个个体基因组都是独特的。这个想法被实施为一种计算方法,即矩阵算法(GEMA)命名为Genome Evolution(基因组进化),可在考虑种群中所有突变的情况下对基因组变化进行建模。 GEMA已通过测试可以模拟整个人类染色体。该程序可以精确地模拟对基因组进化有影响的真实生物过程,例如:1)基因和功能基因组元件的真实排列; 2)在不同核苷酸背景下各种类型的突变的频率; 3)减数分裂重组事件的非随机分布沿着染色体。 GEMA的计算机建模表明,每配子减数分裂重组事件的数量是影响种群适应性的最关键因素之一。在人类中,这些重组产生了配子基因组,该配子基因组平均由48条相应的亲本染色体组成。这种高度镶嵌的配子结构即使在具有有害作用的突变数量比具有有益作用的突变数量最多多达十倍的情况下,也能在大量新突变(每个个体40个)的大量涌入下保持种群的适应性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号