首页> 美国卫生研究院文献>MicrobiologyOpen >A proteomic‐based investigation of potential copper‐responsive biomarkers: Proteins conceptual networks and metabolic pathways featuring Penicillium janthinellum from a heavy metal‐polluted ecological niche
【2h】

A proteomic‐based investigation of potential copper‐responsive biomarkers: Proteins conceptual networks and metabolic pathways featuring Penicillium janthinellum from a heavy metal‐polluted ecological niche

机译:基于蛋白质组学的潜在铜敏感生物标记物研究:来自重金属污染的生态位的青霉菌的蛋白质概念网络和代谢途径

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Filamentous fungi‐copper (Cu) interactions are very important in the formation of natural ecosystems and the bioremediation of heavy metal pollution. However, important issues at the proteome level remain unclear. We compared six proteomes from Cu‐resistant wild‐type (WT) Penicillium janthinellum strain GXCR and a Cu‐sensitive mutant (EC‐6) under 0, 0.5, and 3 mmol/L Cu treatments using iTRAQ. A total of 495 known proteins were identified, and the following conclusions were drawn from the results: Cu tolerance depends on ATP generation and supply, which is relevant to glycolysis pathway activity; oxidative phosphorylation, the TCA cycle, gluconeogenesis, fatty acid synthesis, and metabolism are also affected by Cu; high Cu sensitivity is primarily due to an ATP energy deficit; among ATP generation pathways, Cu‐sensitive and Cu‐insensitive metabolic steps exist; gluconeogenesis pathway is crucial to the survival of fungi in Cu‐containing and sugar‐scarce environments; fungi change their proteomes via two routes (from ATP, ATP‐dependent RNA helicases (ADRHs), and ribosome biogenesis to proteasomes and from ATP, ADRHs to spliceosomes and/or stress‐adapted RNA degradosomes) to cope with changes in Cu concentrations; and unique routes exist through which fungi respond to high environmental Cu. Further, a general diagram of Cu‐responsive paths and a model theory of high Cu are proposed at the proteome level. Our work not only provides the potential protein biomarkers that indicate Cu pollution and targets metabolic steps for engineering Cu‐tolerant fungi during bioremediation but also presents clues for further insight into the heavy metal tolerance mechanisms of other eukaryotes.
机译:丝状真菌-铜(Cu)相互作用在自然生态系统的形成和重金属污染的生物修复中非常重要。但是,蛋白质组学水平上的重要问题仍不清楚。我们使用iTRAQ比较了Cu抗性野生型(WT)青霉青霉菌株GXCR和Cu敏感突变体(EC-6)在0、0.5和3 mmol / L Cu处理下的6种蛋白质组。共鉴定出495种已知蛋白质,并从结果得出以下结论:铜的耐受性取决于ATP的产生和供应,这与糖酵解途径的活性有关;铜也影响氧化磷酸化,TCA循环,糖异生,脂肪酸合成和代谢。高Cu敏感性主要归因于ATP能量不足;在ATP生成途径中,存在对铜敏感和对铜不敏感的代谢步骤;糖异生途径对于真菌在含铜和缺糖环境中的生存至关重要。真菌通过两种途径改变其蛋白质组(从ATP,依赖于ATP的RNA解旋酶(ADRHs)和核糖体的生物发生到蛋白酶体,以及从ATP,ADRH到剪接体和/或适应压力的RNA降解体)以应对Cu浓度的变化;并且存在独特的途径,真菌可以通过这些途径对高环境铜做出响应。此外,在蛋白质组学水平上提出了铜响应路径的一般示意图和高铜的模型理论。我们的工作不仅提供潜在的蛋白质生物标记物,这些蛋白质标志物指示了铜的污染,并在生物修复过程中靶向了工程化耐铜真菌的代谢步骤,还为进一步了解其他真核生物的重金属耐受机制提供了线索。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号