首页> 美国卫生研究院文献>Journal of Nanotechnology in Engineering and Medicine >A Distinct Catabolic to Anabolic Threshold Due to Single-Cell Static Nanomechanical Stimulation in a Cartilage Biokinetics Model
【2h】

A Distinct Catabolic to Anabolic Threshold Due to Single-Cell Static Nanomechanical Stimulation in a Cartilage Biokinetics Model

机译:在软骨生物动力学模型中由于单细胞静态纳米力学刺激的不同代谢分解代谢阈值。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Understanding physicochemical interactions during biokinetic regulation will be critical for the creation of relevant nanotechnology supporting cellular and molecular engineering. The impact of nanoscale influences in medicine and biology can be explored in detail through mathematical models as an in silico testbed. In a recent single-cell biomechanical analysis, the cytoskeletal strain response due to fluid-induced stresses was characterized (Wilson, Z. D., and Kohles, S. S., 2010, “Two-Dimensional Modeling of Nanomechanical Strains in Healthy and Diseased Single-Cells During Microfluidic Stress Applications,” J. Nanotech. Eng. Med., >1(2), p. 021005). Results described a microfluidic environment having controlled nanometer and piconewton resolution for explorations of multiscale mechanobiology. In the present study, we constructed a mathematical model exploring the nanoscale biomolecular response to that controlled microenvironment. We introduce mechanical stimuli and scaling factor terms as specific input values for regulating a cartilage molecule synthesis. Iterative model results for this initial multiscale static load application have identified a transition threshold load level from which the mechanical input causes a shift from a catabolic state to an anabolic state. Modeled molecule homeostatic levels appear to be dependent upon the mechanical stimulus as reflected experimentally. This work provides a specific mathematical framework from which to explore biokinetic regulation. Further incorporation of nanomechanical stresses and strains into biokinetic models will ultimately lead to refined mechanotransduction relationships at the cellular and molecular levels.
机译:了解生物动力学调节过程中的物理化学相互作用对于创建支持细胞和分子工程的相关纳米技术至关重要。纳米级影响在医学和生物学中的影响可以通过作为计算机模拟试验台的数学模型进行详细探讨。在最近的单细胞生物力学分析中,表征了由于流体诱导的应力引起的细胞骨架应变反应(Wilson,ZD和Kohles,SS,2010,“在健康和患病的单细胞中,微流控过程中纳米机械菌株的二维建模”)。应力应用”,J。Nanotech。Eng。Med。,> 1 (2),第021005页)。结果描述了具有可控的纳米和皮克顿分辨率的微流体环境,用于探索多尺度力学生物学。在本研究中,我们构建了一个数学模型,探索对受控微环境的纳米级生物分子响应。我们引入机械刺激和比例因子项作为调节软骨分子合成的特定输入值。此初始多尺度静态载荷应用的迭代模型结果已确定过渡阈值载荷水平,机械输入从该阈值载荷水平引起分解代谢状态到合成代谢状态的转变。模拟的分子稳态水平似乎取决于实验所反映的机械刺激。这项工作提供了一个特定的数学框架,从中可以探索生物动力学调节。将纳米机械应力和应变进一步纳入生物动力学模型将最终导致在细胞和分子水平上的精细机械转导关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号