首页> 美国卫生研究院文献>Scientific Reports >Magnetic nanostructuring and overcoming Browns paradox to realize extraordinary high-temperature energy products
【2h】

Magnetic nanostructuring and overcoming Browns paradox to realize extraordinary high-temperature energy products

机译:磁性纳米结构并克服布朗悖论以实现非凡的高温能源产品

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Nanoscience has been one of the outstanding driving forces in technology recently, arguably more so in magnetism than in any other branch of science and technology. Due to nanoscale bit size, a single computer hard disk is now able to store the text of 3,000,000 average-size books, and today's high-performance permanent magnets—found in hybrid cars, wind turbines, and disk drives—are nanostructured to a large degree. The nanostructures ideally are designed from Co- and Fe-rich building blocks without critical rare-earth elements, and often are required to exhibit high coercivity and magnetization at elevated temperatures of typically up to 180 °C for many important permanent-magnet applications. Here we achieve this goal in exchange-coupled hard-soft composite films by effective nanostructuring of high-anisotropy HfCo7 nanoparticles with a high-magnetization Fe65Co35 phase. An analysis based on a model structure shows that the soft-phase addition improves the performance of the hard-magnetic material by mitigating Brown's paradox in magnetism, a substantial reduction of coercivity from the anisotropy field. The nanostructures exhibit a high room-temperature energy product of about 20.3 MGOe (161.5 kJ/m3), which is a record for a rare earth- or Pt-free magnetic material and retain values as high as 17.1 MGOe (136.1 kJ/m3) at 180°C.
机译:纳米科学是近来技术的杰出推动力之一,可以说在磁性方面比在科学和技术的任何其他分支上都更为重要。由于纳米级的位大小,单个计算机硬盘现在可以存储300万本平均大小的书籍的文本,而如今在混合动力汽车,风力涡轮机和磁盘驱动器中发现的高性能永磁体则被纳米化为大型结构学位。理想的情况下,纳米结构是由富含钴和铁的结构块设计而成的,不含重要的稀土元素,对于许多重要的永磁应用,通常要求它们在通常高达180°C的高温下表现出高矫顽力和磁化强度。在这里,我们通过具有高磁化Fe65Co35相的高各向异性HfCo7纳米颗粒的有效纳米结构,在交换耦合的硬软复合膜中实现了这一目标。基于模型结构的分析表明,软相添加可通过缓解布朗的布朗悖论来改善硬磁材料的性能,从而大大降低了各向异性场的矫顽力。纳米结构表现出约20.3 MGOe(161.5 kJ / m 3 )的高室温能量积,这是不含稀土或不含Pt的磁性材料的记录,并保留了高达在180°C下为17.1 MGOe(136.1 kJ / m 3 )。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号