首页> 美国卫生研究院文献>Scientific Reports >Ultra-low Thermal Conductivity in Si/Ge Hierarchical Superlattice Nanowire
【2h】

Ultra-low Thermal Conductivity in Si/Ge Hierarchical Superlattice Nanowire

机译:Si / Ge分层超晶格纳米线中的超低热导率

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Due to interfacial phonon scattering and nanoscale size effect, silicon/germanium (Si/Ge) superlattice nanowire (SNW) can have very low thermal conductivity, which is very attractive for thermoelectrics. In this paper, we demonstrate using molecular dynamics simulations that the already low thermal conductivity of Si/Ge SNW can be further reduced by introducing hierarchical structure to form Si/Ge hierarchical superlattice nanowire (H-SNW). The structural hierarchy introduces defects to disrupt the periodicity of regular SNW and scatters coherent phonons, which are the key contributors to thermal transport in regular SNW. Our simulation results show that periodically arranged defects in Si/Ge H-SNW lead to a ~38% reduction of the already low thermal conductivity of regular Si/Ge SNW. By randomizing the arrangement of defects and imposing additional surface complexities to enhance phonon scattering, further reduction in thermal conductivity can be achieved. Compared to pure Si nanowire, the thermal conductivity reduction of Si/Ge H-SNW can be as large as ~95%. It is concluded that the hierarchical structuring is an effective way of reducing thermal conductivity significantly in SNW, which can be a promising path for improving the efficiency of Si/Ge-based SNW thermoelectrics.
机译:由于界面声子散射和纳米级尺寸效应,硅/锗(Si / Ge)超晶格纳米线(SNW)的导热系数可能非常低,这对热电学非常有吸引力。在本文中,我们使用分子动力学模拟证明,通过引入分层结构以形成Si / Ge分层超晶格纳米线(H-SNW),可以进一步降低Si / Ge SNW的低导热性。结构层次结构会引入一些缺陷,从而破坏常规SNW的周期性并散射相干声子,这是常规SNW中热传输的关键因素。我们的仿真结果表明,定期排列的Si / Ge H-SNW中的缺陷导致常规Si / Ge SNW的本已很低的导热率降低了约38%。通过使缺陷的排列随机化并施加附加的表面复杂性以增强声子散射,可以实现热导率的进一步降低。与纯Si纳米线相比,Si / Ge H-SNW的热导率降低可高达〜95%。结论是,分层结构是显着降低SNW导热系数的有效方法,这可能是提高Si / Ge基SNW热电效率的有前途的途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号