首页> 美国卫生研究院文献>Scientific Reports >Physical Modeling of Gate-Controlled Schottky Barrier Lowering of Metal-Graphene Contacts in Top-Gated Graphene Field-Effect Transistors
【2h】

Physical Modeling of Gate-Controlled Schottky Barrier Lowering of Metal-Graphene Contacts in Top-Gated Graphene Field-Effect Transistors

机译:顶部栅极石墨烯场效应晶体管中金属石墨烯触点的栅极控制肖特基势垒降低的物理模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A new physical model of the gate controlled Schottky barrier height (SBH) lowering in top-gated graphene field-effect transistors (GFETs) under saturation bias condition is proposed based on the energy conservation equation with the balance assumption. The theoretical prediction of the SBH lowering agrees well with the experimental data reported in literatures. The reduction of the SBH increases with the increasing of gate voltage and relative dielectric constant of the gate oxide, while it decreases with the increasing of oxide thickness, channel length and acceptor density. The magnitude of the reduction is slightly enhanced under high drain voltage. Moreover, it is found that the gate oxide materials with large relative dielectric constant (>20) have a significant effect on the gate controlled SBH lowering, implying that the energy relaxation of channel electrons should be taken into account for modeling SBH in GFETs.
机译:基于能量守恒方程和平衡假设,提出了饱和偏置条件下顶栅石墨烯场效应晶体管(GFET)栅控肖特基势垒高度(SBH)降低的新物理模型。 SBH降低的理论预测与文献报道的实验数据非常吻合。 SBH的减少随着栅极电压和栅极氧化物相对介电常数的增加而增加,而随着氧化物厚度,沟道长度和受体密度的增加而减少。在高漏极电压下,减小的幅度略有增强。此外,已发现相对介电常数较大(> 20)的栅极氧化物材料对栅极受控SBH的降低具有显着影响,这意味着在GFET中对SBH建模时应考虑沟道电子的能量弛豫。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号