首页> 美国卫生研究院文献>Scientific Reports >Long-term Management Effects and Temperature Sensitivity of Soil Organic Carbon in Grassland and Agricultural Soils
【2h】

Long-term Management Effects and Temperature Sensitivity of Soil Organic Carbon in Grassland and Agricultural Soils

机译:草地和农业土壤中有机碳的长期管理效应和温度敏感性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Soil organic carbon (SOC) is integral to soil health and agroecosystem resilience. Despite much research, understanding of temperature sensitivity of SOC under long-term agricultural management is very limited. The main objective of this study was to evaluate SOC and nitrogen (N) dynamics under grasslands and winter wheat (Triticum aestivum L)-based crop rotations in the inland Pacific Northwest (IPNW), USA, and measure SOC mineralization under ambient and elevated incubation temperatures. Soil samples were collected from 0–10 and 10–20 cm depths from an undisturbed grassland (GP), winter wheat-pea (Pisum sativum L) rotations under conventional tillage (WP-CT) and no-tillage (WP-NT), and winter wheat-fallow rotation under conventional tillage (WF-CT) and analyzed for SOC and N pools. Soil samples were incubated at 20 °C and 30 °C for 10 weeks, and SOC mineralization rates were estimated using the first order kinetic model. The GP had the greatest amounts of SOC, total N (TN), and microbial biomass carbon (MBC) and WP rotations had higher inorganic N content than other treatments. The SOC mineralization at elevated incubation temperature was 72–177% more than at the ambient temperature, and the greatest effect was observed in GP. The SOC storage under a given management did not have consistent effects on soil carbon (C) and N mineralization under elevated temperature. However, soil disturbance under WP-CT and WF-CT accelerated SOC mineralization leading to soil C loss. Reducing tillage, integrating legumes into crop rotations, and growing perennial grasses could minimize SOC loss and have the potential to improve soil health and agroecosystem resilience under projected climate warming.
机译:土壤有机碳(SOC)是土壤健康和农业生态系统复原力不可或缺的组成部分。尽管进行了大量研究,但是对长期农业管理下SOC的温度敏感性的了解仍然非常有限。这项研究的主要目的是评估美国西北太平洋内陆(IPNW)草原和冬小麦(Triticum aestivum L)作物轮作下的SOC和氮(N)动态,并测量环境和高孵化率下的SOC矿化度温度。在未耕地(WP-CT)和免耕(WP-NT)下,从未受干扰的草地(GP),冬小麦-豌豆(Pisum sativum L)轮作的0–10和10–20 cm深度采集土壤样品,常规耕作(WF-CT)下的冬小麦小轮作,并分析了SOC和N库。将土壤样品在20°C和30°C下孵育10周,并使用一级动力学模型估算SOC矿化速率。 GP的SOC,总氮(TN)和微生物生物量碳(MBC)数量最多,而WP轮作具有比其他处理更高的无机N含量。孵育温度升高时,SOC的矿化度比环境温度高出72–177%,在GP中观察到最大的影响。在一定的管理下,SOC的储存对高温下的土壤碳(C)和氮矿化没有持续的影响。然而,WP-CT和WF-CT下的土壤扰动加速了SOC的矿化作用,导致土壤C的流失。减少耕作,将豆科植物整合到作物轮作中以及种植多年生禾草可以最大程度地减少SOC损失,并有可能在预计的气候变暖下改善土壤健康状况和农业生态系统的适应能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号