首页> 美国卫生研究院文献>Scientific Reports >Non-monotonic changes in critical solidification rates for stability of liquid-solid interfaces with static magnetic fields
【2h】

Non-monotonic changes in critical solidification rates for stability of liquid-solid interfaces with static magnetic fields

机译:关键凝固速率的非单调变化以确保具有静磁场的液固界面的稳定性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We report the magnetic field dependence of the critical solidification rate for the stability of liquid-solid interfaces. For a certain temperature gradient, the critical solidification rate first increases, then decreases, and subsequently increases with increasing magnetic field. The effect of the magnetic field on the critical solidification rate is more pronounced at low than at high temperature gradients. The numerical simulations show that the magnetic-field dependent changes of convection velocity and contour at the interface agree with the experimental results. The convection velocity first increases, then decreases, and finally increases again with increasing the magnetic field intensity. The variation of the convection contour at the interface first decreases, then increases slightly, and finally increases remarkably with increasing the magnetic field intensity. Thermoelectromagnetic convection (TEMC) plays the role of micro-stirring the melt and is responsible for the increase of interface stability within the initially increasing range of magnetic field intensity. The weak and significant extents of the magneto-hydrodynamic damping (MHD)-dependent solute build-up at the interface front result, respectively, in the gradual decrease and increase of interfacial stability with increasing the magnetic field intensity. The variation of the liquid-side concentration at the liquid-solid interface with the magnetic field supports the proposed mechanism.
机译:我们报告了临界凝固速率对液固界面稳定性的磁场依赖性。对于一定的温度梯度,临界凝固速率首先增加,然后减少,然后随磁场的增加而增加。磁场对临界凝固速率的影响在低温下比在高温梯度下更为明显。数值模拟表明,界面处对流速度和轮廓线的磁场依赖性变化与实验结果吻合。对流速度首先增加,然后减少,最后随着磁场强度的增加而再次增加。随着磁场强度的增加,界面处对流轮廓的变化首先减小,然后稍有增加,最后显着增加。热电磁对流(TEMC)起到微搅拌熔体的作用,并且在磁场强度最初增加的范围内,负责增加界面稳定性。随着磁场强度的增加,界面处的磁流体动力阻尼(MHD)依赖溶质的弱而显着程度分别导致界面稳定性逐渐降低和提高。液-固界面处的液侧浓度随磁场的变化支持了所提出的机理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号