首页> 美国卫生研究院文献>Nature Communications >Positive-bias gate-controlled metal–insulator transition in ultrathin VO2 channels with TiO2 gate dielectrics
【2h】

Positive-bias gate-controlled metal–insulator transition in ultrathin VO2 channels with TiO2 gate dielectrics

机译:具有TiO2栅极电介质的超薄VO2通道中的正偏置栅极控制的金属-绝缘体过渡

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The next generation of electronics is likely to incorporate various functional materials, including those exhibiting ferroelectricity, ferromagnetism and metal–insulator transitions. Metal–insulator transitions can be controlled by electron doping, and so incorporating such a material in transistor channels will enable us to significantly modulate transistor current. However, such gate-controlled metal–insulator transitions have been challenging because of the limited number of electrons accumulated by gate dielectrics, or possible electrochemical reaction in ionic liquid gate. Here we achieve a positive-bias gate-controlled metal–insulator transition near the transition temperature. A significant number of electrons were accumulated via a high-permittivity TiO2 gate dielectric with subnanometre equivalent oxide thickness in the inverse-Schottky-gate geometry. An abrupt transition in the VO2 channel is further exploited, leading to a significant current modulation far beyond the capacitive coupling. This solid-state operation enables us to discuss the electrostatic mechanism as well as the collective nature of gate-controlled metal–insulator transitions, paving the pathway for developing functional field effect transistors.
机译:下一代电子产品可能会结合各种功能材料,包括那些表现出铁电,铁磁性和金属-绝缘体转变的材料。金属-绝缘体的跃迁可以通过电子掺杂来控制,因此在晶体管通道中加入这种材料将使我们能够显着调节晶体管电流。但是,由于栅极电介质中积累的电子数量有限,或者在离子液体栅极中可能发生电化学反应,因此这种由栅极控制的金属-绝缘体跃迁一直具有挑战性。在这里,我们在转变温度附近实现了正偏置栅极控制的金属-绝缘体转变。在反肖特基栅极几何结构中,大量的电子通过高介电常数的TiO2栅极电介质积累,其亚纳米级等效氧化物厚度。 VO2通道中的突然转变被进一步利用,从而导致远远超出电容耦合的有效电流调制。这种固态操作使我们能够讨论静电机理以及栅极控制的金属-绝缘体过渡的集体性质,从而为开发功能性场效应晶体管铺平了道路。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号