首页> 美国卫生研究院文献>Nature Communications >Elastically driven intermittent microscopic dynamics in soft solids
【2h】

Elastically driven intermittent microscopic dynamics in soft solids

机译:弹性驱动的软固体间歇微观动力学

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Soft solids with tunable mechanical response are at the core of new material technologies, but a crucial limit for applications is their progressive aging over time, which dramatically affects their functionalities. The generally accepted paradigm is that such aging is gradual and its origin is in slower than exponential microscopic dynamics, akin to the ones in supercooled liquids or glasses. Nevertheless, time- and space-resolved measurements have provided contrasting evidence: dynamics faster than exponential, intermittency and abrupt structural changes. Here we use 3D computer simulations of a microscopic model to reveal that the timescales governing stress relaxation, respectively, through thermal fluctuations and elastic recovery are key for the aging dynamics. When thermal fluctuations are too weak, stress heterogeneities frozen-in upon solidification can still partially relax through elastically driven fluctuations. Such fluctuations are intermittent, because of strong correlations that persist over the timescale of experiments or simulations, leading to faster than exponential dynamics.
机译:具有可调节机械响应的软固体是新材料技术的核心,但应用的关键限制是它们随着时间的推移会逐渐老化,从而极大地影响其功能。普遍接受的范例是,这种老化是渐进的,其起源比指数微观动力学要慢,类似于过冷液体或玻璃中的动力学。然而,时间和空间分辨的测量提供了相反的证据:动力学比指数,间断性和突然的结构变化快。在这里,我们使用微观模型的3D计算机模拟来揭示,分别通过热波动和弹性恢复控制应力松弛的时间尺度是老化动力学的关键。当热波动太弱时,凝固时冻结的应力异质性仍然可以通过弹性驱动的波动而部分松弛。这种波动是间歇性的,因为在实验或模拟的时间范围内持续存在强相关性,从而导致动态增长快于指数动态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号