首页> 美国卫生研究院文献>Tissue Engineering. Part C Methods >Functional Heart Valve Scaffolds Obtained by Complete Decellularization of Porcine Aortic Roots in a Novel Differential Pressure Gradient Perfusion System
【2h】

Functional Heart Valve Scaffolds Obtained by Complete Decellularization of Porcine Aortic Roots in a Novel Differential Pressure Gradient Perfusion System

机译:新型差压梯度灌注系统中猪主动脉根完全脱细胞获得的功能性心脏瓣膜支架。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

There is a great need for living valve replacements for patients of all ages. Such constructs could be built by tissue engineering, with perspective of the unique structure and biology of the aortic root. The aortic valve root is composed of several different tissues, and careful structural and functional consideration has to be given to each segment and component. Previous work has shown that immersion techniques are inadequate for whole-root decellularization, with the aortic wall segment being particularly resistant to decellularization. The aim of this study was to develop a differential pressure gradient perfusion system capable of being rigorous enough to decellularize the aortic root wall while gentle enough to preserve the integrity of the cusps. Fresh porcine aortic roots have been subjected to various regimens of perfusion decellularization using detergents and enzymes and results compared to immersion decellularized roots. Success criteria for evaluation of each root segment (cusp, muscle, sinus, wall) for decellularization completeness, tissue integrity, and valve functionality were defined using complementary methods of cell analysis (histology with nuclear and matrix stains and DNA analysis), biomechanics (biaxial and bending tests), and physiologic heart valve bioreactor testing (with advanced image analysis of open–close cycles and geometric orifice area measurement). Fully acellular porcine roots treated with the optimized method exhibited preserved macroscopic structures and microscopic matrix components, which translated into conserved anisotropic mechanical properties, including bending and excellent valve functionality when tested in aortic flow and pressure conditions. This study highlighted the importance of (1) adapting decellularization methods to specific target tissues, (2) combining several methods of cell analysis compared to relying solely on histology, (3) developing relevant valve-specific mechanical tests, and (4) in vitro testing of valve functionality.
机译:各个年龄段的患者都非常需要活瓣置换术。可以通过组织工程从主动脉根的独特结构和生物学角度构建此类构建体。主动脉瓣根由几个不同的组织组成,必须仔细考虑每个节段和组件的结构和功能。先前的工作表明,浸没技术不足以实现全根脱细胞,而主动脉壁节段特别耐脱细胞。这项研究的目的是开发一种压差梯度灌注系统,该系统能够足够严格地使主动脉根壁脱细胞,同时又足够柔和以保持牙尖的完整性。新鲜猪主动脉根已经使用去污剂和酶进行了多种灌注脱细胞方案,其结果与浸入脱细胞的根相比。使用细胞分析(带有核和基质染色的组织学和DNA分析),生物力学(双轴)的互补方法,定义了评估每个根段(尖,肌肉,窦,壁)脱细胞完整性,组织完整性和瓣膜功能的成功标准和弯曲测试),以及生理性心脏瓣膜生物反应器测试(具有开/关循环和几何孔面积测量的高级图像分析)。用优化方法处理的完全脱细胞的猪根表现出保留的宏观结构和微观基质成分,当在主动脉血流和压力条件下进行测试时,它们转化为保守的各向异性机械性能,包括弯曲和出色的瓣膜功能。这项研究强调了(1)使脱细胞方法适应​​特定目标组织的重要性,(2)与仅依赖于组织学相结合的几种细胞分析方法相结合,(3)开发相关的瓣膜特异性力学测试以及(4)体外的重要性阀门功能测试。

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号