首页> 美国卫生研究院文献>Medical Physics >A generalized 2D pencil beam scaling algorithm for proton dose calculation in heterogeneous slab geometries
【2h】

A generalized 2D pencil beam scaling algorithm for proton dose calculation in heterogeneous slab geometries

机译:用于异质板几何中质子剂量计算的通用二维铅笔束缩放算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

>Purpose: Pencil beam algorithms are commonly used for proton therapy dose calculations. developed a two-dimensional (2D) scaling algorithm which accurately models the radial pencil beam width as a function of depth in heterogeneous slab geometries using a scaled expression for the radial kernel width in water as a function of depth and kinetic energy. However, an assumption made in the derivation of the technique limits its range of validity to cases where the input expression for the radial kernel width in water is derived from a local scattering power model. The goal of this work is to derive a generalized form of 2D pencil beam scaling that is independent of the scattering power model and appropriate for use with any expression for the radial kernel width in water as a function of depth.>Methods: Using Fermi-Eyges transport theory, the authors derive an expression for the radial pencil beam width in heterogeneous slab geometries which is independent of the proton scattering power and related quantities. The authors then perform test calculations in homogeneous and heterogeneous slab phantoms using both the original 2D scaling model and the new model with expressions for the radial kernel width in water computed from both local and nonlocal scattering power models, as well as a nonlocal parameterization of Molière scattering theory. In addition to kernel width calculations, dose calculations are also performed for a narrow Gaussian proton beam.>Results: Pencil beam width calculations indicate that both 2D scaling formalisms perform well when the radial kernel width in water is derived from a local scattering power model. Computing the radial kernel width from a nonlocal scattering model results in the local 2D scaling formula under-predicting the pencil beam width by as much as 1.4 mm (21%) at the depth of the Bragg peak for a 220 MeV proton beam in homogeneous water. This translates into a 32% dose discrepancy for a 5 mm Gaussian proton beam. Similar trends were observed for calculations made in heterogeneous slab phantoms where it was also noted that errors tend to increase with greater beam penetration. The generalized 2D scaling model performs well in all situations, with a maximum dose error of 0.3% at the Bragg peak in a heterogeneous phantom containing 3 cm of hard bone.>Conclusions: The authors have derived a generalized form of 2D pencil beam scaling which is independent of the proton scattering power model and robust to the functional form of the radial kernel width in water used for the calculations. Sample calculations made with this model show excellent agreement with expected values in both homogeneous water and heterogeneous phantoms.
机译:>目的:笔形束算法通常用于质子治疗剂量计算。开发了一种二维(2D)缩放算法,该算法使用在水中的径向核宽度作为深度和动能的函数的比例表达式,在异质平板几何形状中精确地建模了径向铅笔束宽度随深度的函数。但是,在推导该技术时做出的假设将其有效性范围限制在以下情况下:从局部散射功率模型推导水中径向核宽度的输入表达式。这项工作的目的是获得一种二维形式的铅笔束缩放比例的广义形式,该形式与散射功率模型无关,并且适合与水的径向核宽度随深度变化的任何表达式配合使用。>方法:< / strong>使用费米-艾格斯(Fermi-Eyges)输运理论,作者推导了非均质平板几何形状中径向笔形束宽度的表达式,该表达式与质子散射能力和相关量无关。然后,作者使用原始的2D缩放模型和新模型在均质和异质平板模型中执行测试计算,该模型具有从局部和非局部散射功率模型以及Molière的非局部参数化计算得出的水中径向核宽度的表达式散射理论。除了核宽度计算外,还对窄高斯质子束执行剂量计算。局部散射功率模型。根据非局部散射模型计算径向核宽度会导致局部2D缩放公式对均质水中220 MeV质子束的布拉格峰深度处的铅笔束宽度预测不足1.4毫米(21%) 。对于5 mm高斯质子束,这相当于32%的剂量差异。在异质平板模型中进行的计算也观察到了类似的趋势,其中还指出,误差会随着束穿透的增加而增加。广义2D缩放模型在所有情况下均表现良好,在包含3 cm硬骨的异质模型中,布拉格峰的最大剂量误差为0.3%。>结论:作者得出了广义形式二维铅笔束缩放比例,它与质子散射功率模型无关,并且对用于计算的水中径向核宽度的函数形式具有鲁棒性。用该模型进行的样本计算表明,在均质水体和异质体模中,均与预期值极佳的一致性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号