首页> 美国卫生研究院文献>Astrobiology >Impact of a High Magnetic Field on the Orientation of Gravitactic Unicellular Organisms—A Critical Consideration about the Application of Magnetic Fields to Mimic Functional Weightlessness
【2h】

Impact of a High Magnetic Field on the Orientation of Gravitactic Unicellular Organisms—A Critical Consideration about the Application of Magnetic Fields to Mimic Functional Weightlessness

机译:强磁场对引力单细胞生物取向的影响—关于模拟功能失重中磁场应用的关键考虑

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The gravity-dependent behavior of Paramecium biaurelia and Euglena gracilis have previously been studied on ground and in real microgravity. To validate whether high magnetic field exposure indeed provides a ground-based facility to mimic functional weightlessness, as has been suggested earlier, both cell types were observed during exposure in a strong homogeneous magnetic field (up to 30 T) and a strong magnetic field gradient. While swimming, Paramecium cells were aligned along the magnetic field lines; orientation of Euglena was perpendicular, demonstrating that the magnetic field determines the orientation and thus prevents the organisms from the random swimming known to occur in real microgravity. Exposing Astasia longa, a flagellate that is closely related to Euglena but lacks chloroplasts and the photoreceptor, as well as the chloroplast-free mutant E. gracilis 1F, to a high magnetic field revealed no reorientation to the perpendicular direction as in the case of wild-type E. gracilis, indicating the existence of an anisotropic structure (chloroplasts) that determines the direction of passive orientation. Immobilized Euglena and Paramecium cells could not be levitated even in the highest available magnetic field gradient as sedimentation persisted with little impact of the field on the sedimentation velocities. We conclude that magnetic fields are not suited as a microgravity simulation for gravitactic unicellular organisms due to the strong effect of the magnetic field itself, which masks the effects known from experiments in real microgravity. Key Words: Levitation—Microgravity—Gravitaxis—Gravikinesis—Gravity. Astrobiology 14, 205–215.
机译:先前已经在地面和实际微重力下研究了草履虫和小粒虫的重力依赖性行为。为了验证高磁场暴露是否确实提供了模拟功能失重的地面设施,如先前所建议的,在强均质磁场(高达30 T)和强磁场梯度暴露期间都观察到两种细胞类型。游泳时,草履虫细胞沿磁场线排列; Euglena的方向是垂直的,表明磁场决定了方向,因此可以防止生物体在已知的真实重力下随机游动。将长鞭毛虫(一种鞭毛与裸藻密切相关,但缺少叶绿体和光感受器,以及无叶绿体的突变体E. gracilis 1F)暴露于强磁场中,表明野生时没有垂直方向的重新定向-E. gracilis类型,表示存在一个确定被动定向方向的各向异性结构(叶绿体)。即使在最高可用磁场梯度下,固定化的裸藻和草履虫细胞也不会悬浮,因为沉积持续存在,而电场对沉积速度的影响很小。我们得出结论,由于磁场本身的强大作用,磁场不适合用作引力单细胞生物的微重力模拟,这掩盖了实际微重力实验中已知的作用。关键词:悬浮—微重力—重力—重力—重力。天体生物学14,205-215。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号