首页> 美国卫生研究院文献>Antimicrobial Agents and Chemotherapy >Sulfur Mobilization for Fe-S Cluster Assembly by the Essential SUF Pathway in the Plasmodium falciparum Apicoplast and Its Inhibition
【2h】

Sulfur Mobilization for Fe-S Cluster Assembly by the Essential SUF Pathway in the Plasmodium falciparum Apicoplast and Its Inhibition

机译:硫在恶性疟原虫的质子质体中通过SUF途径动员Fe-S团簇及其抑制作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The plastid of the malaria parasite, the apicoplast, is essential for parasite survival. It houses several pathways of bacterial origin that are considered attractive sites for drug intervention. Among these is the sulfur mobilization (SUF) pathway of Fe-S cluster biogenesis. Although the SUF pathway is essential for apicoplast maintenance and parasite survival, there has been limited biochemical investigation of its components and inhibitors of Plasmodium SUFs have not been identified. We report the characterization of two proteins, Plasmodium falciparum SufS (PfSufS) and PfSufE, that mobilize sulfur in the first step of Fe-S cluster assembly and confirm their exclusive localization to the apicoplast. The cysteine desulfurase activity of PfSufS is greatly enhanced by PfSufE, and the PfSufS-PfSufE complex is detected in vivo. Structural modeling of the complex reveals proximal positioning of conserved cysteine residues of the two proteins that would allow sulfide transfer from the PLP (pyridoxal phosphate) cofactor-bound active site of PfSufS. Sulfide release from the l-cysteine substrate catalyzed by PfSufS is inhibited by the PLP inhibitor d-cycloserine, which forms an adduct with PfSufS-bound PLP. d-Cycloserine is also inimical to parasite growth, with a 50% inhibitory concentration close to that reported for Mycobacterium tuberculosis, against which the drug is in clinical use. Our results establish the function of two proteins that mediate sulfur mobilization, the first step in the apicoplast SUF pathway, and provide a rationale for drug design based on inactivation of the PLP cofactor of PfSufS.
机译:疟原虫的质体,apicoplast,对于寄生虫的生存至关重要。它包含细菌起源的几种途径,被认为是药物干预的诱人场所。其中有Fe-S团簇生物发生的硫动员(SUF)途径。尽管SUF途径对于维持原生质体和寄生虫生存至关重要,但对其成分的生化研究仍然有限,尚未发现疟原虫SUF的抑制剂。我们报告了两种蛋白质的特征,恶性疟原虫SufS(PfSufS)和PfSufE,在Fe-S簇组装的第一步动员了硫,并确认了它们对原生质体的独家定位。 PfSufE大大增强了PfSufS的半胱氨酸脱硫酶活性,并且在体内检测到PfSufS-PfSufE复合物。该复合物的结构模型揭示了这两种蛋白质的保守半胱氨酸残基的近侧定位,这将允许硫化物从PfSufS的PLP(磷酸吡rid醛)辅因子结合的活性位点转移。 PfSufS催化从L-半胱氨酸底物释放的硫化物被PLP抑制剂d-环丝氨酸抑制,后者与PfSufS结合的PLP形成加合物。 d-环丝氨酸还对寄生虫生长有害,其抑制浓度接近50%的结核分枝杆菌报道浓度,该药物正在临床上使用。我们的结果建立了两种蛋白的功能,这些蛋白介导了硫的动员,这是apicoplast SUF途径的第一步,并为基于PfSufS的PLP辅因子失活的药物设计提供了依据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号