class='head no_bottom_margin' id='sec1title'>Int'/> Human Oligodendrogenic Neural Progenitor Cells Delivered with Chondroitinase ABC Facilitate Functional Repair of Chronic Spinal Cord Injury
首页> 美国卫生研究院文献>Stem Cell Reports >Human Oligodendrogenic Neural Progenitor Cells Delivered with Chondroitinase ABC Facilitate Functional Repair of Chronic Spinal Cord Injury
【2h】

Human Oligodendrogenic Neural Progenitor Cells Delivered with Chondroitinase ABC Facilitate Functional Repair of Chronic Spinal Cord Injury

机译:软骨素酶ABC交付人类少突胶质神经祖细胞促进慢性脊髓损伤的功能修复。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionNeural progenitor cells (NPCs) represent a promising regenerative strategy to target several CNS disorders (). Neurobehavioral recovery following NPC transplantation into the injured spinal cord has been reported in both rodent and non-human primate models (, , ). Although NPCs have therapeutic value, their translational potential is hindered by limited availability, immunologic complications, and ethical concerns. Recently, transplantation of induced pluripotent stem cell (iPSC)-derived NPCs and iPSC-derived oligodendrocyte progenitor cell-enriched NPCs has demonstrated therapeutic promise (, , ). However, previous studies have identified the potential for tumorigenicity, immunogenicity, and genetic and epigenetic abnormalities following iPSC-based cell transplantation (). To avoid the risks associated with NPCs and iPSCs, we focused on human directly reprogrammed NPCs (drNPCs), which were directly generated from somatic cells, thus avoiding the pluripotent state ().Within the injured spinal cord environment, oligodendrocytes are highly susceptible to the cytotoxic conditions found both local and distant to the lesion epicenter, leading to demyelination of preserved axons (). investigated the temporal pattern of conduction failure in individual fibers across a contusion injury and examined changes in their conduction properties from acute to chronic stages of injury. Acutely (1–7 days) after spinal cord injury (SCI), complete conduction block was observed in ascending dorsal column axons, followed by a period of improved conduction during the subacute (2–4 weeks) phase, without further improvement at the chronic (3–6 months) phase. At 6 months after SCI, 16% of sampled fibers were capable of conducting across the lesion. Furthermore, this study demonstrated a population of axons (20% of the fibers tested) which are chronically demyelinated and viable but unable to conduct under normal physiological conditions (). Using detailed histological analyses, observed that the number of demyelinated axons progressively increased up to 450 days after injury. Although remyelination of axons was observed from 14 to 450 days post-SCI, it was found to be incomplete. The results of the previous studies indicated that chronic and progressive demyelination represents an important target for cell transplantation therapy. Previous studies have revealed the biological importance of remyelination and tissue sparing by graft-derived cells for neurobehavioral recovery following the transplantation of NPCs into the injured spinal cord (, ). Thus, remyelinating spared axons and promotion of neural plasticity and/or tissue sparing by graft-derived oligodendrocytes represents a promising therapeutic strategy following SCI (href="#bib43" rid="bib43" class=" bibr popnode">Trounson and McDonald, 2015). Building on these findings, we recently developed a novel method to generate human iPSC-derived NPCs or drNPCs biased toward an oligodendrogenic fate (oNPCs) for the treatment of SCI (href="#bib24" rid="bib24" class=" bibr popnode">Khazaei et al., 2017, href="#bib27" rid="bib27" class=" bibr popnode">Nagoshi et al., 2018). Transplantation of oNPCs in the subacute phase of SCI showed greater differentiation into oligodendrocytes, axonal remyelination, and tissue sparing, which ultimately resulted in the recovery of motor function (href="#bib27" rid="bib27" class=" bibr popnode">Nagoshi et al., 2018).The majority of studies have reported that NPCs transplanted in the subacute period following SCI have therapeutic effects (href="#bib7" rid="bib7" class=" bibr popnode">Cummings et al., 2005, href="#bib20" rid="bib20" class=" bibr popnode">Iwanami et al., 2005). Unfortunately, most patients with SCI have progressed past the subacute period, and effective therapies to target the chronic phase of SCI are greatly lacking (href="#bib28" rid="bib28" class=" bibr popnode">Nishimura et al., 2013, href="#bib40" rid="bib40" class=" bibr popnode">Suzuki et al., 2017). Although a number of animal model studies have aimed to achieve neurobehavioral recovery in the chronic phase of SCI with NPC transplantation, functional recovery has not been observed (href="#bib8" rid="bib8" class=" bibr popnode">Cusimano et al., 2012, href="#bib35" rid="bib35" class=" bibr popnode">Parr et al., 2007). Due to the inhibitory microenvironment of the chronically injured spinal cord, which includes a cystic cavity with surrounding glial scar as well as neuronal and glial cellular loss, repair and regeneration of the injured cord has proven challenging (href="#bib38" rid="bib38" class=" bibr popnode">Silver and Miller, 2004). The glial scar consists of a non-neural lesion core (fibrotic scar) and an astrocytic scar border (href="#bib39" rid="bib39" class=" bibr popnode">Sofroniew, 2018). The non-neural lesion core is comprised of stromal cells and extracellular matrix molecules including fibronectin, collagen, proteoglycans, and laminin (href="#bib31" rid="bib31" class=" bibr popnode">O'Shea et al., 2017). The astrocyte scar forms a border between the non-neural lesion core and adjacent spared neural tissue and restricts the spread of inflammation (href="#bib4" rid="bib4" class=" bibr popnode">Burda and Sofroniew, 2014). After SCI, a phenotypic change to astrocytes occurs, known as reactive astrogliosis. Naive astrocytes undergo a change including increased glial fibrillary acidic protein (GFAP) expression, hypertrophy, and process extension, resulting in a characteristic phenotype of reactive astrocytes within several days after SCI (href="#bib16" rid="bib16" class=" bibr popnode">Hara et al., 2017, href="#bib32" rid="bib32" class=" bibr popnode">Okada et al., 2006). Subsequently, reactive astrocytes overlap their processes and transform into scar-forming astrocytes (href="#bib16" rid="bib16" class=" bibr popnode">Hara et al., 2017, href="#bib38" rid="bib38" class=" bibr popnode">Silver and Miller, 2004). In SCI lesions, chondroitin sulfate proteoglycans (CSPGs) are produced not only by astrocytes, but also pericytes, fibroblast lineage cells, and inflammatory cells. CSPGs comprise the main inhibitory component of the glial scar (href="#bib2" rid="bib2" class=" bibr popnode">Anderson et al., 2016, href="#bib39" rid="bib39" class=" bibr popnode">Sofroniew, 2018). Importantly, a recent study demonstrated that genetically targeted astrocyte ablation did not reduce CSPGs, suggesting that astrocytes are not the primary producers of CSPGs in SCI lesions (href="#bib2" rid="bib2" class=" bibr popnode">Anderson et al., 2016). The inhibitory CSPGs limit integration and migration of grafted cells, which prevents remyelination of the spared axons and regeneration of neural circuits (href="#bib15" rid="bib15" class=" bibr popnode">Grijalva et al., 1996, href="#bib28" rid="bib28" class=" bibr popnode">Nishimura et al., 2013). To counter the CSPGs, the enzyme chondroitinase ABC (ChABC) has been shown to degrade the sulfated glycosaminoglycan chains on the CSPGs (href="#bib26" rid="bib26" class=" bibr popnode">Moon et al., 2001) and promote neural plasticity and functional recovery after acute SCI (href="#bib3" rid="bib3" class=" bibr popnode">Bradbury et al., 2002). Moreover, we have previously shown that a combinatorial therapy of ChABC and NPCs or iPSC-derived NPCs increased the long-term survival of NPCs and optimized their integration and migration in chronic SCI, resulting in neurobehavioral recovery (href="#bib12" rid="bib12" class=" bibr popnode">Fuhrmann et al., 2018, href="#bib22" rid="bib22" class=" bibr popnode">Karimi-Abdolrezaee et al., 2010, href="#bib40" rid="bib40" class=" bibr popnode">Suzuki et al., 2017).One of the challenges of providing sustained delivery of ChABC is the thermal instability of the enzyme (href="#bib41" rid="bib41" class=" bibr popnode">Tester et al., 2007), which limits the activity to less than 4 days in vivo (href="#bib6" rid="bib6" class=" bibr popnode">Crespo et al., 2007). In previous SCI studies, ChABC has been delivered continuously using an osmotic mini-pump with intrathecal catheters (href="#bib22" rid="bib22" class=" bibr popnode">Karimi-Abdolrezaee et al., 2010, href="#bib40" rid="bib40" class=" bibr popnode">Suzuki et al., 2017). However, the mini-pump delivery system is prone to dislodgement, can be associated with off-target delivery, is invasive, and is associated with complications such as infection and arachnoiditis (href="#bib11" rid="bib11" class=" bibr popnode">Follett et al., 2004). Previously, we demonstrated that an affinity-based release of ChABC from a crosslinked methylcellulose (XMC) hydrogel could reduce CSPG levels at the injury site in vivo for 2 weeks and promote functional repair following a single intrathecal injection (href="#bib34" rid="bib34" class=" bibr popnode">Pakulska et al., 2013, href="#bib33" rid="bib33" class=" bibr popnode">Pakulska et al., 2017). To achieve affinity release, ChABC is delivered as a fusion protein with Src homology 3 (SH3-ChABC), and XMC is modified with an SH3 binding peptide.The present study aimed to assess the efficacy of a combinatorial strategy employing an XMC hydrogel containing ChABC and human directly reprogrammed oNPCs to treat chronic SCI. Here, in a clip-contusion chronic SCI model using immunodeficient rats, we degraded CSPGs with a single intrathecal injection of an innovative XMC hydrogel containing ChABC. Next, we transplanted clinically relevant oNPCs 1 week after the intrathecal injection to assess the therapeutic potential of this combinatorial therapy in the chronically injured spinal cord.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介神经祖细胞(NPC)代表着针对多种CNS疾病的有希望的再生策略() 。在啮齿动物模型和非人类灵长类动物模型中都报告了NPC移植到受损脊髓后的神经行为恢复(,,)。尽管NPC具有治疗价值,但其可用性有限,免疫学并发症和伦理问题阻碍了它们的翻译潜力。最近,诱导多能干细胞(iPSC)衍生的NPC和iPSC衍生的少突胶质祖细胞丰富的NPC的移植已显示出治疗前景(,,)。但是,先前的研究已经确定了基于iPSC的细胞移植后有致瘤性,免疫原性以及遗传和表观遗传异常的可能性。为了避免与NPC和iPSC相关的风险,我们专注于人类直接重编程的NPC(drNPC),它们是由体细胞直接生成的,从而避免了多能性状态()。在受伤的脊髓环境中,少突胶质细胞非常容易受到在病变震中局部和远处都发现了细胞毒性状况,导致保留的轴突脱髓鞘()。研究了挫伤中单个纤维传导失败的时间模式,并检查了从急性到慢性损伤阶段其传导特性的变化。脊髓损伤(SCI)后急性(1–7天),在上升的背柱轴突中观察到完全传导阻滞,随后在亚急性(2–4周)阶段有一段传导改善的时期,慢性患者没有进一步改善(3-6个月)阶段。脊髓损伤后6个月,有16%的采样纤维能够穿过病灶。此外,这项研究表明,轴突群体(受测纤维的20%)具有长期脱髓鞘作用,并能在正常生理条件下进行,但无法进行。使用详细的组织学分析,观察到脱髓鞘轴突的数量在受伤后长达450天逐渐增加。尽管在脊髓损伤后14到450天观察到轴突的髓鞘再生,但发现它是不完全的。先前研究的结果表明,慢性和进行性脱髓鞘代表了细胞移植治疗的重要目标。先前的研究表明,在将NPC移植到受伤的脊髓后,移植物衍生的细胞进行髓鞘再生和保留组织对于神经行为恢复的生物学重要性(,)。因此,在SCI之后,通过髓鞘来源的少突胶质细胞使髓鞘再生的髓鞘再生并促进神经可塑性和/或组织保留,代表了一种有前途的治疗策略(href="#bib43" rid="bib43" class=" bibr popnode"> Trounson and麦当劳,2015年)。基于这些发现,我们最近开发了一种新颖的方法来生成人类iPSC衍生的NPC或倾向于少突胶质命运(oNPC)的drNPC,以治疗SCI(href =“#bib24” rid =“ bib24” class =“ bibr popnode“> Khazaei等人,2017 ,href="#bib27" rid="bib27" class=" bibr popnode"> Nagoshi等人,2018 )。在SCI的亚急性期移植oNPCs表现出更大的分化为少突胶质细胞,轴突髓鞘再生和组织稀疏,最终导致运动功能的恢复(href =“#bib27” rid =“ bib27” class =“ bibr popnode “> Nagoshi等人,2018 )。大多数研究报告称,在SCI后亚急性期移植的NPC具有治疗作用(href =”#bib7“ rid =” bib7“ class =” bibr popnode“> Cummings等,2005 ,href="#bib20" rid="bib20" class=" bibr popnode"> Iwanami等,2005 )。不幸的是,大多数SCI患者已超过亚急性期发展,并且针对SCI慢性期的有效治疗方法十分缺乏(href="#bib28" rid="bib28" class=" bibr popnode"> Nishimura等人,2013 ,href="#bib40" rid="bib40" class=" bibr popnode">铃木等人,2017 )。尽管许多动物模型研究旨在通过NPC移植在SCI的慢性期实现神经行为恢复,但尚未观察到功能恢复(href="#bib8" rid="bib8" class=" bibr popnode"> Cusimano等人,2012 ,href="#bib35" rid="bib35" class=" bibr popnode"> Parr等人,2007 )。由于慢性损伤的脊髓具有抑制性微环境,其中包括一个囊性腔,周围有神经胶质瘢痕以及神经元和神经胶质细胞丢失,受伤的脐带的修复和再生已被证明具有挑战性(href="#bib38" rid="bib38" class=" bibr popnode"> Silver and Miller,2004 )。胶质瘢痕由非神经病变核心(纤维化瘢痕)和星形胶质瘢痕边界组成(href="#bib39" rid="bib39" class=" bibr popnode"> Sofroniew,2018 )。非神经病变核心由基质细胞和细胞外基质分子组成,包括纤连蛋白,胶原蛋白,蛋白聚糖和层粘连蛋白(href="#bib31" rid="bib31" class=" bibr popnode"> O'Shea等人。,2017 )。星形胶质细胞疤痕在非神经病变核心和邻近的多余神经组织之间形成边界,并限制了炎症的扩散(href="#bib4" rid="bib4" class=" bibr popnode"> Burda和Sofroniew,2014年)。 SCI后,星形胶质细胞发生表型改变,称为反应性星形胶质增生。幼稚的星形胶质细胞发生变化,包括神经胶质纤维酸性蛋白(GFAP)表达增加,肥大和过程扩展,导致SCI后几天内反应性星形胶质细胞的特征表型(href =“#bib16” rid =“ bib16”类=“ bibr popnode”> Hara等人,2017 ,href="#bib32" rid="bib32" class=" bibr popnode"> Okada等人,2006 )。随后,反应性星形胶质细胞重叠其过程并转化为形成疤痕的星形胶质细胞(href="#bib16" rid="bib16" class=" bibr popnode"> Hara等人,2017 ,href = “#bib38” rid =“ bib38” class =“ bibr popnode”>银和米勒,2004年)。在SCI病变中,硫酸软骨素蛋白聚糖(CSPG)不仅由星形胶质细胞产生,而且还由周细胞,成纤维细胞谱系细胞和炎性细胞产生。 CSPG是神经胶质瘢痕的主要抑制成分(href="#bib2" rid="bib2" class=" bibr popnode"> Anderson等,2016 ,href =“#bib39” rid =“ bib39” class =“ bibr popnode”> Sofroniew,2018年)。重要的是,最近的一项研究表明,遗传靶向的星形胶质细胞消融并未降低CSPG,这表明星形胶质细胞不是SCI病变中CSPG的主要产生者(href="#bib2" rid="bib2" class=" bibr popnode"> Anderson等人,2016 )。抑制性CSPG限制了移植细胞的整合和迁移,从而阻止了多余的轴突的髓鞘再生和神经回路的再生(href="#bib15" rid="bib15" class=" bibr popnode"> Grijalva et al。,1996)。 ,href="#bib28" rid="bib28" class=" bibr popnode"> Nishimura等人,2013 )。为了对抗CSPG,已证明软骨素酶ABC(ChABC)可以降解CSPG上的硫酸化糖胺聚糖链(href="#bib26" rid="bib26" class=" bibr popnode"> Moon等人, 2001 )并促进急性SCI后的神经可塑性和功能恢复(href="#bib3" rid="bib3" class=" bibr popnode"> Bradbury等,2002 )。此外,我们以前已经证明,ChABC和NPC或iPSC衍生的NPC的联合治疗可增加NPC的长期存活率,并优化其在慢性SCI中的整合和迁移,从而导致神经行为恢复(href =“#bib12” rid =“ bib12” class =“ bibr popnode”> Fuhrmann等人,2018 ,href="#bib22" rid="bib22" class=" bibr popnode"> Karimi-Abdolrezaee等人, 2010 ,href="#bib40" rid="bib40" class=" bibr popnode">铃木等人,2017 )。提供持续交付ChABC的挑战之一是酶的热不稳定性(href="#bib41" rid="bib41" class=" bibr popnode"> Tester et al。,2007 ),将其在活体内的活动时间限制为少于4天( href="#bib6" rid="bib6" class=" bibr popnode"> Crespo等人,2007 )。在以前的SCI研究中,使用带鞘管导管的渗透微型泵连续输送ChABC(href="#bib22" rid="bib22" class=" bibr popnode"> Karimi-Abdolrezaee等,2010 ,href="#bib40" rid="bib40" class=" bibr popnode">铃木等人,2017 )。但是,微型泵输送系统易于移位,可能与脱靶输送相关,具有侵入性,并与诸如感染和蛛网膜炎等并发症相关(href =“#bib11” rid =“ bib11”类=“ bibr popnode”> Follett等人,2004 )。以前,我们证明了从交联的甲基纤维素(XMC)水凝胶中基于亲和力的ChABC释放可以降低体内损伤部位的CSPG水平达2周,并在一次鞘内注射后促进功能修复(href =“#bib34 “ rid =” bib34“ class =” bibr popnode“>帕库尔斯卡等人,2013 ,href="#bib33" rid="bib33" class=" bibr popnode">帕库尔斯卡等人,2017 )。为了实现亲和力释放,ChABC作为具有Src同源性3的融合蛋白(SH3-ChABC)交付,并且XMC被SH3结合肽修饰。本研究旨在评估采用含ChABC的XMC水凝胶和人类直接重编程的oNPC治疗慢性SCI的联合策略的疗效。在这里,在使用免疫缺陷大鼠的挫伤挫伤慢性SCI模型中,我们通过鞘内注射含有ChABC的创新XMC水凝胶对CSPG进行了降解。接下来,我们在鞘内注射后1周移植了临床相关的oNPC,以评估这种联合疗法在慢性受伤脊髓中的治疗潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号