首页> 美国卫生研究院文献>Proceedings of the Royal Society B: Biological Sciences >One crop breeding cycle from starvation? How engineering crop photosynthesis for rising CO2 and temperature could be one important route to alleviation
【2h】

One crop breeding cycle from starvation? How engineering crop photosynthesis for rising CO2 and temperature could be one important route to alleviation

机译:饥饿导致一个作物育种周期?工程作物光合作用如何提高CO2和温度可能是减轻污染的重要途径之一

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Global climate change is likely to severely impact human food production. This comes at a time when predicted demand for primary foodstuffs by a growing human population and changing global diets is already outpacing a stagnating annual rate of increase in crop productivity. Additionally, the time required by crop breeding and bioengineering to release improved varieties to farmers is substantial, meaning that any crop improvements needed to mitigate food shortages in the 2040s would need to start now. In this perspective, the rationale for improvements in photosynthetic efficiency as a breeding objective for higher yields is outlined. Subsequently, using simple simulation models it is shown how predicted changes in temperature and atmospheric [CO2] affect leaf photosynthetic rates. The chloroplast accounts for the majority of leaf nitrogen in crops. Within the chloroplast about 25% of nitrogen is invested in the carboxylase, Rubisco, which catalyses the first step of CO2 assimilation. Most of the remaining nitrogen is invested in the apparatus to drive carbohydrate synthesis and regenerate ribulose-1:5-bisphosphate (RuBP), the CO2-acceptor molecule at Rubisco. At preindustrial [CO2], investment in these two aspects may have been balanced resulting in co-limitation. At today's [CO2], there appears to be over-investment in Rubisco, and despite the counter-active effects of rising temperature and [CO2], this imbalance is predicted to worsen with global climate change. By breeding or engineering restored optimality under future conditions increased productivity could be achieved in both tropical and temperate environments without additional nitrogen fertilizer. Given the magnitude of the potential shortfall, better storage conditions, improved crop management and better crop varieties will all be needed. With the short time-scale at which food demand is expected to outpace supplies, all available technologies to improve crop varieties, from classical crop breeding to crop genetic engineering should be employed. This will require vastly increased public and private investment to support translation of first discovery in laboratories to replicated field trials, and an urgent re-evaluation of regulation of crop genetic engineering.
机译:全球气候变化可能会严重影响人类粮食生产。当时正值不断增长的人口和不断变化的全球饮食对主要食品的预期需求已经超过作物生产力的停滞年增长率。此外,农作物育种和生物工程向农民释放改良品种所需的时间很长,这意味着为减轻2040年代粮食短缺所需的任何农作物改良都需要立即开始。从这个角度出发,概述了提高光合作用效率的理由,以此作为提高产量的育种目标。随后,使用简单的仿真模型显示了温度和大气[CO2]的预测变化如何影响叶片的光合速率。叶绿体占农作物叶氮的大部分。在叶绿体中,约有25%的氮投入到羧化酶Rubisco中,该酶催化了CO2同化的第一步。剩余的大部分氮气都投入到设备中,以驱动碳水化合物的合成并再生Rubisco上的CO2受体分子核糖-1:5-双磷酸(RuBP)。在工业化[CO2]阶段,这两个方面的投资可能已经平衡,从而导致共同限制。在当今的[CO2]看来,Rubisco的投资过剩,尽管温度和[CO2]升高产生了反作用,但预计这种失衡会随着全球气候变化而加剧。通过育种或工程改造,可以在未来条件下恢复最佳状态,而在热带和温带环境中都可以提高生产力,而无需添加氮肥。考虑到潜在短缺的严重性,将需要更好的储存条件,改善的作物管理和更好的作物品种。由于预计粮食需求将在短时间内超过供应,因此应采用从传统农作物育种到农作物基因工程的所有现有技术来改善农作物品种。这将需要大量增加的公共和私人投资,以支持将实验室中的首次发现转化为重复的田间试验,并紧急重新评估作物基因工程的法规。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号