首页> 美国卫生研究院文献>The Journal of Neuroscience >Differential Maturation of Climbing Fiber Innervation in Cerebellar Vermis
【2h】

Differential Maturation of Climbing Fiber Innervation in Cerebellar Vermis

机译:小脑Ver骨中上升纤维神经支配的差异性成熟

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Folding of the brain surface is a general morphological adaptation to maximize surface area in a limited cranial volume. Surface folding is present not only in the neocortex but also in the cerebellar cortex. This folding creates subdivisions of the cortical surface: the sulci, the gyri, and the straight bank region, which is interposed. Is cortical folding only the solution to a surface-volume problem or does it also confer functional differences on the subdivisions that are created by this geometry? Here we have used the innervation of Purkinje cells by climbing fibers as a model system to explore potential functional differences. Purkinje cells are innervated by multiple climbing fibers at birth but undergo an activity-dependent refinement, such that by postnatal day (P) 21, most are contacted by a single climbing fiber. Using whole-cell recording from slices of cerebellar vermis derived from juvenile (P18-25) or adult (P60-83) mice, we found that significantly more Purkinje cells in the sulcus were innervated by multiple climbing fibers than in the gyrus or bank subdivisions; however, the basic properties of climbing fiber-Purkinje cell EPSCs such as kinetics, amplitude, and paired-pulse ratio were similar across cortical subdivisions. To search for a morphological correlate of differential multiple climbing fiber innervation, we labeled climbing fibers and performed reconstructions of immunofluorescent images. These revealed that, unlike the bank-gyrus subdivisions, most of the climbing fibers in the sulcus do not innervate the superficial molecular layer. These findings suggest that the subdivisions of the cerebellar cortex produced by folding may create functionally distinct entities.
机译:折叠大脑表面是一种通用的形态学适应方法,可以在有限的颅骨体积中最大化表面积。表面折叠不仅存在于新皮质中,而且还存在于小脑皮质中。这种折叠会形成皮层表面的细分部分:插入的龈沟,脑回和笔直的河岸区域。皮质折叠是仅解决表面体积问题的解决方案,还是还在由该几何形状创建的细分上赋予功能差异?在这里,我们通过攀爬纤维作为模型系统使用Purkinje细胞的神经支配,以探索潜在的功能差异。浦肯野细胞在出生时会受到多条攀爬纤维的支配,但会受到活动依赖的影响,因此在出生后第21天,大多数攀单纤维会与之接触。使用来自幼年(P18-25)或成年(P60-83)小鼠的小脑ver片的全细胞记录,我们发现沟中的Purkinje细胞受多条攀缘纤维的支配的次数明显多于回旋或堤岸的分支。 ;然而,攀登纤维-Purkinje细胞EPSC的基本特性,如动力学,幅度和成对脉冲比在整个皮质细分中都相似。为了搜索差异性多重登山纤维神经支配的形态相关性,我们标记了登山纤维并进行了免疫荧光图像的重建。这些结果表明,与河岸回细分区不同,沟中的大多数攀登纤维不会支配表层分子层。这些发现表明,折叠产生的小脑皮质细分可能会产生功能上不同的实体。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号