首页> 美国卫生研究院文献>The Journal of Neuroscience >Inhibition of Krebs Cycle Enzymes by Hydrogen Peroxide: A Key Role of α-Ketoglutarate Dehydrogenase in Limiting NADH Production under Oxidative Stress
【2h】

Inhibition of Krebs Cycle Enzymes by Hydrogen Peroxide: A Key Role of α-Ketoglutarate Dehydrogenase in Limiting NADH Production under Oxidative Stress

机译:过氧化氢对克雷布斯循环酶的抑制作用:α-酮戊二酸脱氢酶在氧化应激下限制NADH产生的关键作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this study we addressed the function of the Krebs cycle to determine which enzyme(s) limits the availability of reduced nicotinamide adenine dinucleotide (NADH) for the respiratory chain under H2O2-induced oxidative stress, in intact isolated nerve terminals. The enzyme that was most vulnerable to inhibition by H2O2 proved to be aconitase, being completely blocked at 50 μmH2O2. α-Ketoglutarate dehydrogenase (α-KGDH) was also inhibited but only at higher H2O2 concentrations (≥100 μm), and only partial inactivation was achieved. The rotenone-induced increase in reduced nicotinamide adenine dinucleotide (phosphate) [NAD(P)H] fluorescence reflecting the amount of NADH available for the respiratory chain was also diminished by H2O2, and the effect exerted at small concentrations (≤50 μm) of the oxidant was completely prevented by 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), an inhibitor of glutathione reductase. BCNU-insensitive decline by H2O2 in the rotenone-induced NAD(P)H fluorescence correlated with inhibition of α-ketoglutarate dehydrogenase. Decrease in the glutamate content of nerve terminals was induced by H2O2 at concentrations inhibiting aconitase. It is concluded that (1) aconitase is the most sensitive enzyme in the Krebs cycle to inhibition by H2O2, (2) at small H2O2 concentrations (≤50 μm) when aconitase is inactivated, glutamate fuels the Krebs cycle and NADH generation is unaltered, (3) at higher H2O2concentrations (≥100 μm) inhibition of α-ketoglutarate dehydrogenase limits the amount of NADH available for the respiratory chain, and (4) increased consumption of NADPH makes a contribution to the H2O2-induced decrease in the amount of reduced pyridine nucleotides. These results emphasize the importance of α-KGDH in impaired mitochondrial function under oxidative stress, with implications for neurodegenerative diseases and cell damage induced by ischemia/reperfusion.
机译:在这项研究中,我们研究了Krebs循环的功能,以确定在完整的离体神经末梢中H2O2引起的氧化应激下,哪种酶限制了还原烟酰胺腺嘌呤二核苷酸(NADH)在呼吸链中的可用性。最容易受到H2O2抑制的酶被证明是乌头酸酶,被50μmH2O2完全封闭。 α-酮戊二酸脱氢酶(α-KGDH)也被抑制,但仅在较高的H2O2浓度(≥100μm)下才被抑制,并且只能部分失活。鱼藤酮诱导的减少的烟酰胺腺嘌呤二核苷酸(磷酸盐)[NAD(P)H]荧光的增加(反映了可用于呼吸链的NADH的量)也被H2O2减弱了,并且在浓度较低(≤50μm)的水中谷胱甘肽还原酶抑制剂1,3-双(2-氯乙基)-1-亚硝基脲(BCNU)完全阻止了氧化剂的产生。鱼藤酮诱导的NAD(P)H荧光中H2O2对BCNU不敏感的下降与α-酮戊二酸脱氢酶的抑制有关。在抑制乌头酸酶的浓度下,过氧化氢诱导了神经末梢谷氨酸含量的降低。结论是:(1)乌头酸酶是克雷布斯循环中对H2O2抑制作用最敏感的酶,(2)在低H 2 O 2 浓度(≤50μm)下)当乌头酸酶失活时,谷氨酸助长了Krebs循环,而NADH的生成未发生变化,(3)在较高H 2 O 2 浓度(≥100μm)时对α-的抑制作用酮戊二酸脱氢酶限制了可用于呼吸链的NADH量,(4)NADPH的消耗量增加是由H 2 O 2 诱导的量减少的原因之一还原的吡啶核苷酸。这些结果强调了α-KGDH在氧化应激下受损的线粒体功能中的重要性,对神经变性疾病和缺血/再灌注引起的细胞损伤具有重要意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号