首页> 美国卫生研究院文献>Biophysical Journal >Coupling Magnetically Induced Electric Fields to Neurons: Longitudinal and Transverse Activation
【2h】

Coupling Magnetically Induced Electric Fields to Neurons: Longitudinal and Transverse Activation

机译:磁感应电场与神经元的耦合:纵向和横向激活。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We present a theory and computational models to couple the electric field induced by magnetic stimulation to neuronal membranes. Based on the characteristics of magnetically induced electric fields and the modified cable equation that we developed previously, quasipotentials are derived as a simple and accurate approximation for coupling of the electric fields to neurons. The conventional and modified cable equations are used to simulate magnetic stimulation of long peripheral nerves by circular and figure-8 coils. Activation thresholds are obtained over a range of lateral and vertical coil positions for two nonlinear membrane models representing unmyelinated and myelinated straight axons and also for undulating myelinated axons. For unmyelinated straight axons, the thresholds obtained with the modified cable equation are significantly lower due to transverse polarization, and the spatial distributions of thresholds as a function of coil position differ significantly from predictions by the activating function. However, the activation thresholds of unmyelinated axons obtained with either cable equation are very high and beyond the output capabilities of conventional magnetic stimulators. For myelinated axons, threshold values are similar for both cable equations and within the range of magnetic stimulators. Whereas the transverse field contributes negligibly to the activation thresholds of myelinated fibers, axonal undulation can significantly increase or decrease thresholds depending on coil position. The analysis provides a rigorous theoretical foundation and implementation methods for the use of the cable equation to model neuronal response to magnetically induced electric fields. Experimentally observed stimulation with the electric fields perpendicular to the nerve trunk cannot be explained by transverse polarization and is likely due to nerve fiber undulation and other geometrical inhomogeneities.
机译:我们提出了一种理论和计算模型,以将磁刺激引起的电场耦合到神经元膜。根据磁场的特征和我们先前开发的改进的电缆方程,可以将准电位作为将电场耦合到神经元的简单而精确的近似值。常规和改进的电缆方程用于模拟圆形和图8线圈对长周围神经的磁刺激。在代表非有髓和有髓直的轴突的两个非线性膜模型以及有波纹的有轴突的轴突的一系列横向和垂直线圈位置范围内获得激活阈值。对于无髓质的直轴突,由于横向极化,用修正的电缆方程获得的阈值明显较低,并且阈值的空间分布与线圈位置的关系与激活函数的预测显着不同。但是,通过任一电缆方程式获得的无髓鞘轴突的激活阈值非常高,超出了常规磁刺激器的输出能力。对于有髓神经的轴突,在电缆方程式和电磁刺激器范围内,阈值都相似。尽管横向场对有髓纤维的激活阈值的贡献可忽略不计,但轴突起伏会根据线圈位置而显着增加或减小阈值。该分析为使用电缆方程来建模对磁感应电场的神经元响应提供了严格的理论基础和实现方法。实验观察到的垂直于神经干的电场刺激不能用横向极化来解释,这很可能是由于神经纤维起伏和其他几何不均匀性造成的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号