首页> 美国卫生研究院文献>Biophysical Journal >Receptor Displacement in the Cell Membrane by Hydrodynamic Force Amplification through Nanoparticles
【2h】

Receptor Displacement in the Cell Membrane by Hydrodynamic Force Amplification through Nanoparticles

机译:通过纳米粒子的水动力放大细胞膜中的受体位移。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We introduce an intrinsically multiplexed and easy to implement method to apply an external force to a biomolecule and thus probe its interaction with a second biomolecule or, more generally, its environment (for example, the cell membrane). We take advantage of the hydrodynamic interaction with a controlled fluid flow within a microfluidic channel to apply a force. By labeling the biomolecule with a nanoparticle that acts as a kite and increases the hydrodynamic interaction with the fluid, the drag induced by convection becomes important. We use this approach to track the motion of single membrane receptors, the Clostridium perfringens ε-toxin (CPεT) receptors that are confined in lipid raft platforms, and probe their interaction with the environment. Under external force, we observe displacements over distances up to 10 times the confining domain diameter due to elastic deformation of a barrier and return to the initial position after the flow is stopped. Receptors can also jump over such barriers. Analysis of the receptor motion characteristics before, during, and after a force is applied via the flow indicates that the receptors are displaced together with their confining raft platform. Experiments before and after incubation with latrunculin B reveal that the barriers are part of the actin cytoskeleton and have an average spring constant of 2.5 ± 0.6 pN/μm before vs. 0.6 ± 0.2 pN/μm after partial actin depolymerization. Our data, in combination with our previous work demonstrating that the ε-toxin receptor confinement is not influenced by the cytoskeleton, imply that it is the raft platform and its constituents rather than the receptor itself that encounters and deforms the barriers formed by the actin cytoskeleton.
机译:我们介绍了一种内在多重且易于实现的方法,以向生物分子施加外力,从而探究其与第二种生物分子或更普遍地与其环境(例如,细胞膜)的相互作用。我们利用微流体通道内受控流体流动的流体动力学相互作用来施加力。通过用充当风筝并增加与流体的流体动力相互作用的纳米颗粒标记生物分子,对流引起的阻力变得很重要。我们使用这种方法来跟踪单个膜受体,局限于脂筏平台中的产气荚膜梭状芽胞杆菌ε-毒素(CPεT)受体的运动,并探究它们与环境的相互作用。在外力作用下,由于障碍物的弹性变形,我们观察到的位移距离最高达限制区域直径的10倍,并在流动停止后返回初始位置。受体也可以跳过这些障碍。对通过流动施加力之前,期间和之后的受体运动特性的分析表明,受体及其约束筏平台一起移位。用latrunculin B孵育前后的实验表明,该屏障是肌动蛋白细胞骨架的一部分,平均弹簧常数为2.5±0.6 pN /μm,而部分肌动蛋白解聚后为0.6±0.2 pN /μm。我们的数据与我们先前的研究表明ε-毒素受体的限制不受细胞骨架的影响相结合,这意味着它是筏平台及其成分,而不是受体本身遇到并变形由肌动蛋白细胞骨架形成的屏障。 。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号