首页> 美国卫生研究院文献>Biophysical Journal >Ligand Escape Pathways and (Un)Binding Free Energy Calculations for the Hexameric Insulin-Phenol Complex
【2h】

Ligand Escape Pathways and (Un)Binding Free Energy Calculations for the Hexameric Insulin-Phenol Complex

机译:六聚体胰岛素-苯酚复合物的配体逸出途径和(无)结合自由能计算

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Cooperative binding of phenolic species to insulin hexamers is known to stabilize pharmaceutical preparations of the hormone. Phenol dissociation is rapid on hexamer dissolution timescales, and phenol unbinding upon dilution is likely the first step in the conversion of (pharmaceutical) hexameric insulin to the active monomeric form upon injection. However, a clear understanding of the determinants of the rates of phenol unbinding remains obscure, chiefly because residues implicated in phenol exchange as determined by NMR are not all associated with likely unbinding routes suggested by the best-resolved hexamer structures. We apply random acceleration molecular dynamics simulation to identify potential escape routes of phenol from hydrophobic cavities in the hexameric insulin-phenol complex. We find three major pathways, which provide new insights into (un)binding mechanisms for phenol. We identify several residues directly participating in escape events that serve to resolve ambiguities from recent NMR experiments. Reaction coordinates for dissociation of phenol are developed based on these exit pathways. Potentials of mean force along the reaction coordinate for each pathway are resolved using multiple independent steered molecular dynamics simulations with second-order cumulant expansion of Jarzynski's equality. Our results for ΔF agree reasonably well within the range of known experimental and previous simulation magnitudes of this quantity. Based on structural analysis and energetic barriers for each pathway, we suggest a plausible preferred mechanism of phenolic exchange that differs from previous mechanisms. Several weakly-bound metastable states are also observed for the first time in the phenol dissociation reaction.
机译:酚类物质与胰岛素六聚体的协同结合可稳定该激素的药物制剂。在六聚体溶解时间尺度上,苯酚解离迅速,并且稀释后,苯酚解吸附可能是注射后(药物)六聚体胰岛素转化为活性单体形式的第一步。然而,对苯酚解键速率决定因素的清楚理解仍然不清楚,这主要是因为通过NMR测定,与酚交换有关的残基并非都与最佳解析的六聚体结构所暗示的可能的解键途径有关。我们应用随机加速分子动力学模拟,以识别六聚体胰岛素-苯酚复合物中疏水腔中苯酚的潜在逸出途径。我们发现了三种主要途径,它们为苯酚的(非)结合机理提供了新的见解。我们确定了几个直接参与逃逸事件的残基,这些残基用于解决最近NMR实验产生的歧义。基于这些出口途径开发了用于苯酚解离的反应坐标。使用多个独立的受控分子动力学模拟(具有Jarzynski等式的二阶累积量展开),可解决沿每个路径反应坐标方向的平均力的潜力。我们的ΔF结果在此数量的已知实验值和先前模拟量的范围内相当吻合。基于每个路径的结构分析和能量屏障,我们提出了一种可能的酚类交换机制,该机制与以前的机制有所不同。在苯酚离解反应中也首次观察到几种弱结合的亚稳态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号