首页> 美国卫生研究院文献>Biophysical Journal >A polarization model overcoming the geometric restrictions of the laplace solution for spheroidal cells: obtaining new equations for field-induced forces and transmembrane potential.
【2h】

A polarization model overcoming the geometric restrictions of the laplace solution for spheroidal cells: obtaining new equations for field-induced forces and transmembrane potential.

机译:极化模型克服了球形细胞的拉普拉斯解的几何约束:获得场感应力和跨膜电位的新方程。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We present a new model for a variety of electric polarization effects on oblate and prolate homogeneous and single-shell spheroids. For homogeneous spheroids the model is identical to the Laplace model. For single-shell spheres of cell-like geometry the calculated difference of the induced dipole moments is in the thousandths range. To solve Laplace's equation for nonspherical single-shell objects it is necessary to assume a confocal shell, which results in different cell membrane properties in the pole and equator regions, respectively. Our alternative model addresses this drawback. It assumes that the disturbance of the external field due to polarization may project into the medium to a characteristic distance, the influential radius. This parameter is related to the axis ratio of the spheroid over the depolarizing factors and allows us to determine the geometry for a finite resistor-capacitor model. From this model the potential at the spheroid's surface is obtained and, consequently, the local field inside a homogeneous spheroid is determined. In the single-shell case, this is the effective local field of an equivalent homogeneous spheroid. Finally, integration over the volume yields the frequency-dependent induced dipole moment. The resistor-capacitor approach allowed us to find simple equations for the critical and characteristic frequencies, force plateaus and peak heights of deformation, dielectrophoresis and electrorotation for homogeneous and single-shell spheroids, and a more generalized equation for the induced transmembrane potential of spheroidal cells.
机译:我们提出了一种新的模型,用于对扁长和扁长的均质和单壳球体的各种极化作用。对于均质球体,该模型与Laplace模型相同。对于像细胞一样的几何形状的单壳球,所计算的感应偶极矩之差在千分之一范围内。为了求解非球面单壳物体的拉普拉斯方程,有必要假设一个共聚焦壳,这将导致极区和赤道区分别具有不同的细胞膜特性。我们的替代模型解决了这个缺点。假设由于极化引起的外部场的干扰可能会投射到介质中某个特征距离,即影响半径。此参数与球体的轴比与去极化因子有关,并允许我们确定有限电阻器-电容器模型的几何形状。从该模型中,可以获得球体表面的电势,因此,可以确定均匀球体内部的局部场。在单壳情况下,这是等效均质球体的有效局部场。最后,在体积上积分会产生频率相关的感应偶极矩。电阻器-电容器方法使我们能够找到关键和特征频率的简单方程式,均质和单壳椭球体的变形力平台和峰高,介电电泳和电旋转,以及球状细胞感应跨膜电势的更广义方程式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号