首页> 美国卫生研究院文献>Biotechnology for Biofuels >The flat-plate plant-microbial fuel cell: the effect of a new design on internal resistances
【2h】

The flat-plate plant-microbial fuel cell: the effect of a new design on internal resistances

机译:平板植物微生物燃料电池:新设计对内阻的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Due to a growing world population and increasing welfare, energy demand worldwide is increasing. To meet the increasing energy demand in a sustainable way, new technologies are needed. The Plant-Microbial Fuel Cell (P-MFC) is a technology that could produce sustainable bio-electricity and help meeting the increasing energy demand. Power output of the P-MFC, however, needs to be increased to make it attractive as a renewable and sustainable energy source. To increase power output of the P-MFC internal resistances need to be reduced. With a flat-plate P-MFC design we tried to minimize internal resistances compared to the previously used tubular P-MFC design. With the flat-plate design current and power density per geometric planting area were increased (from 0.15 A/m2 to 1.6 A/m2 and from 0.22 W/m2 to and 0.44 W/m2)as were current and power output per volume (from 7.5 A/m3 to 122 A/m3 and from 1.3 W/m3 to 5.8 W/m3). Internal resistances times volume were decreased, even though internal resistances times membrane surface area were not. Since the membrane in the flat-plate design is placed vertically, membrane surface area per geometric planting area is increased, which allows for lower internal resistances times volume while not decreasing internal resistances times membrane surface area. Anode was split into three different sections on different depths of the system, allowing to calculate internal resistances on different depths. Most electricity was produced where internal resistances were lowest and where most roots were present; in the top section of the system. By measuring electricity production on different depths in the system, electricity production could be linked to root growth. This link offers opportunities for material-reduction in new designs. Concurrent reduction in material use and increase in power output brings the P-MFC a step closer to usable energy density and economic feasibility.
机译:由于世界人口的增长和福利的增加,全世界的能源需求正在增加。为了以可持续的方式满足不断增长的能源需求,需要新技术。植物微生物燃料电池(P-MFC)是一种可以产生可持续的生物电力并有助于满足不断增长的能源需求的技术。但是,需要增加P-MFC的功率输出,使其具有可再生和可持续能源的吸引力。为了增加P-MFC的功率输出,需要降低内部电阻。与以前使用的管状P-MFC设计相比,采用平板P-MFC设计时,我们试图将内部电阻降至最低。随着平板设计的增加,每几何种植面积的电流和功率密度从0.15 A / m 2 增加到1.6 A / m 2 和0.22 W / m < sup / 2 至0.44 W / m 2 )每体积的电流和功率输出(从7.5 A / m 3 至122 A / m < sup> 3 和从1.3 W / m 3 到5.8 W / m 3 )。内阻乘以体积减小,即使内阻乘以膜表面积没有减小。由于平板设计中的膜垂直放置,因此每几何种植面积的膜表面积增加了,这允许内部电阻乘以体积,而不会减小内部电阻乘以膜表面积。将阳极分为系统不同深度的三个不同部分,从而可以计算不同深度的内部电阻。大部分电力产生于内部电阻最低且根源最多的地方;在系统顶部。通过测量系统中不同深度的电力产量,可以将电力产量与根系生长联系起来。该链接为减少新设计中的材料提供了机会。同时减少材料使用和增加功率输出使P-MFC更加接近可用能量密度和经济可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号