首页> 美国卫生研究院文献>Proceedings of the Royal Society B: Biological Sciences >Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach
【2h】

Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach

机译:具有灵活机翼的悬停鹰蛾的空气动力学性能:一种计算方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Insect wings are deformable structures that change shape passively and dynamically owing to inertial and aerodynamic forces during flight. It is still unclear how the three-dimensional and passive change of wing kinematics owing to inherent wing flexibility contributes to unsteady aerodynamics and energetics in insect flapping flight. Here, we perform a systematic fluid-structure interaction based analysis on the aerodynamic performance of a hovering hawkmoth, Manduca, with an integrated computational model of a hovering insect with rigid and flexible wings. Aerodynamic performance of flapping wings with passive deformation or prescribed deformation is evaluated in terms of aerodynamic force, power and efficiency. Our results reveal that wing flexibility can increase downwash in wake and hence aerodynamic force: first, a dynamic wing bending is observed, which delays the breakdown of leading edge vortex near the wing tip, responsible for augmenting the aerodynamic force-production; second, a combination of the dynamic change of wing bending and twist favourably modifies the wing kinematics in the distal area, which leads to the aerodynamic force enhancement immediately before stroke reversal. Moreover, an increase in hovering efficiency of the flexible wing is achieved as a result of the wing twist. An extensive study of wing stiffness effect on aerodynamic performance is further conducted through a tuning of Young's modulus and thickness, indicating that insect wing structures may be optimized not only in terms of aerodynamic performance but also dependent on many factors, such as the wing strength, the circulation capability of wing veins and the control of wing movements.
机译:昆虫的翅膀是可变形的结构,由于飞行过程中的惯性力和空气动力而被动地,动态地改变形状。尚不清楚由于固有的机翼柔性,机翼运动学的三维和被动变化如何导致昆虫拍打飞行中不稳定的空气动力学和能量学。在这里,我们对悬停的鹰蛾Manduca的空气动力学性能进行了系统的流固耦合分析,并采用了具有刚性和柔性翼的悬停昆虫的集成计算模型。根据气动力,功率和效率评估具有被动变形或规定变形的襟翼的气动性能。我们的结果表明,机翼的柔韧性会增加尾流中的向下冲刷,从而增加空气动力的产生:首先,观察到机翼的动态弯曲,这会延迟机翼尖端附近前缘涡旋的破坏,从而增加了空气动力的产生。第二,机翼弯曲和扭曲的动态变化相结合,有利地改变了机翼在远端区域的运动学特性,从而在反转行程之前立即增强了空气动力。此外,由于机翼的扭转,柔性机翼的悬停效率得以提高。通过调整杨氏模量和厚度进一步对机翼刚度对空气动力性能的影响进行了广泛的研究,表明昆虫的机翼结构不仅可以在空气动力性能方面进行优化,而且还可以取决于许多因素,例如机翼强度,机翼静脉的循环能力和机翼运动的控制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号