首页> 美国卫生研究院文献>The Journal of Physiology >Kinetic and functional analysis of transient persistent and resurgent sodium currents in rat cerebellar granule cells in situ: an electrophysiological and modelling study
【2h】

Kinetic and functional analysis of transient persistent and resurgent sodium currents in rat cerebellar granule cells in situ: an electrophysiological and modelling study

机译:大鼠小脑颗粒细胞中瞬时持续和中枢钠电流的动力学和功能分析:电生理和模型研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Cerebellar neurones show complex and differentiated mechanisms of action potential generation that have been proposed to depend on peculiar properties of their voltage-dependent Na+ currents. In this study we analysed voltage-dependent Na+ currents of rat cerebellar granule cells (GCs) by performing whole-cell, patch-clamp experiments in acute rat cerebellar slices. A transient Na+ current (INaT) was always present and had the properties of a typical fast-activating/inactivating Na+ current. In addition to INaT, robust persistent (INaP) and resurgent (INaR) Na+ currents were observed. INaP peaked at ∼−40 mV, showed half-maximal activation at ∼−55 mV, and its maximal amplitude was about 1.5% of that of INaT. INaR was elicited by repolarizing pulses applied following step depolarizations able to activate/inactivate INaT, and showed voltage- and time-dependent activation and voltage-dependent decay kinetics. The conductance underlying INaR showed a bell-shaped voltage dependence, with peak at −35 mV. A significant correlation was found between GC INaR and INaT peak amplitudes; however, GCs expressing INaT of similar size showed marked variability in terms of INaR amplitude, and in a fraction of cells INaR was undetectable. INaT, INaP and INaR could be accounted for by a 13-state kinetic scheme comprising closed, open, inactivated and blocked states. Current-clamp experiments carried out to identify possible functional correlates of INaP and/or INaR revealed that in GCs single action potentials were followed by depolarizing afterpotentials (DAPs). In a majority of cells, DAPs showed properties consistent with INaR playing a role in their generation. Computer modelling showed that INaR promotes DAP generation and enhances high-frequency firing, whereas INaP boosts near-threshold firing activity. Our findings suggest that special properties of voltage-dependent Na+ currents provides GCs with mechanisms suitable for shaping activity patterns, with potentially important consequences for cerebellar information transfer and computation.
机译:小脑神经元显示出复杂的和不同的动作电位生成机制,这些机制被认为取决于其电压依赖性Na + 电流的特殊性质。在这项研究中,我们通过在急性大鼠小脑切片中进行全细胞膜片钳实验,分析了大鼠小脑颗粒细胞(GC)的电压依赖性Na + 电流。瞬态Na + 电流(INaT)始终存在,并具有典型的快速激活/灭活Na + 电流的特性。除了INaT,还观察到了持续的持久(INaP)和中生的(INaR)Na + 电流。 INaP在〜−40 mV处达到峰值,在〜−55 mV处显示一半的最大激活,其最大幅度约为INaT的1.5%。 INaR是由能够激活/灭活INaT的分步去极化后施加的重新极化脉冲引起的,并显示出电压和时间相关的激活以及电压相关的衰减动力学。 INaR下方的电导显示出钟形电压依赖性,峰值位于-35 mV。在GC INaR和INaT峰幅度之间发现了显着的相关性。然而,表达相似大小的INaT的GC在INaR振幅方面显示出明显的可变性,并且在一部分细胞中无法检测到INaR。 INaT,INaP和 I NaR 可以通过13状态动力学方案解释,包括封闭,开放,失活和封闭状态。进行电流钳实验以鉴定 I NaP 和/或 I NaR 的可能功能相关性,发现GC的单个动作电位之后是去极化后电位(DAP)。在大多数细胞中,DAP表现出与 I NaR 一致的特性。计算机建模表明, I NaR 促进DAP生成并增强高频发射,而 I NaP 促进近DAP的产生。阈值射击活动。我们的发现表明,电压依赖性Na + 电流的特殊性质为GC提供了适合于调整活动模式的机制,对小脑信息传递和计算具有潜在的重要影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号