首页> 美国卫生研究院文献>Journal of Research of the National Institute of Standards and Technology >Non-Contact Methods for Measuring Front Cavity Depths of Laboratory Standard Microphones Using a Depth-Measuring Microscope
【2h】

Non-Contact Methods for Measuring Front Cavity Depths of Laboratory Standard Microphones Using a Depth-Measuring Microscope

机译:非接触式方法使用深度测量显微镜测量实验室标准麦克风的前腔深度

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

To achieve an acceptable degree of accuracy at high frequencies in some standardized methods for primary calibration of laboratory standard (LS) microphones, the front cavity depth lfc of each microphone must be known. This dimension must be measured using non-contact methods to prevent damage to the microphone diaphragm. The basic capabilities of an optical depth-measuring microscope were demonstrated by the agreement of its measurements within 0.7 μm of the known values of reference gage blocks. Using this microscope, two basic methods were applied to measure lfc. One (D) uses direct measurements at the microphone front surface annulus and conventional data reduction techniques. The other (GB) uses measurements at the surface of a gage block placed on the annulus, and plane-fitting data reduction techniques intended to reduce the effects of the slightly imperfect geometries of the microphones. The GB method was developed to provide a smoother surface of measurement than the relatively rough surface of the annulus, and to simulate the contact that occurs between the annulus and the smooth, plane surface of an acoustic coupler during microphone calibration. Using these methods, full data sets were obtained at 33 measurement positions (D), or 25 positions (GB). In addition, D and GB subsampling methods were applied by using subsamples of either the D or the GB full data sets. All these methods were applied to six LS microphones, three each of two different types. The GB subsampling methods are preferred for several reasons. The measurement results for lfc obtained by these methods agree well with those obtained by the GB method using the full data set. The expanded uncertainties of results from the GB subsampling methods are not very different from the expanded uncertainty of results from the GB method using the full data set, and are smaller than the expanded uncertainties of results from the D subsampling methods. Measurements of lfc using the GB subsampling method with only nine measurement positions exhibit expanded uncertainties (with coverage factor k = 2) within 4 μm, and can improve the uncertainty of microphone calibrations by an order of magnitude over the result from use of generic standardized microphone type nominal lfc values and tolerance limits.
机译:为了在一些用于实验室标准(LS)麦克风的初步校准的标准化方法中,在高频下达到可接受的准确度,必须知道每个麦克风的前腔深度lfc。必须使用非接触方法测量该尺寸,以防止损坏麦克风振膜。光学深度测量显微镜的基本功能通过其测量值在参考量规的已知值的0.7μm范围内的一致性来证明。使用该显微镜,应用了两种基本方法来测量lfc。一个(D)使用麦克风前表面环空处的直接测量和常规数据缩减技术。另一个(GB)使用放置在环面上的量规块表面的测量值以及旨在减少传声器几何形状不完美的影响的平面拟合数据缩减技术。开发GB方法的目的是提供比环面相对粗糙的表面更光滑的测量表面,并模拟在麦克风校准过程中环空与声耦合器的光滑平面之间的接触。使用这些方法,可以获得33个测量位置(D)或25个位置(GB)的完整数据集。此外,通过使用D或GB完整数据集的子样本来应用D和GB子采样方法。所有这些方法都应用于六个LS麦克风,两种不同类型中的三个。出于多种原因,首选GB二次采样方法。通过这些方法获得的lfc的测量结果与使用完整数据集的GB方法获得的测量结果非常吻合。 GB二次采样方法的结果扩展不确定度与使用完整数据集的GB方法的结果扩展不确定度差异不大,并且小于D二次采样方法的结果扩展不确定度。使用GB子采样方法仅对9个测量位置进行lfc测量,在4μm范围内显示出更大的不确定性(覆盖因子k = 2),并且与使用通用标准化麦克风相比,可以将麦克风校准的不确定性提高一个数量级。输入lfc标称值和公差极限。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号