首页> 美国卫生研究院文献>Channels >Measurement of the membrane potential in small cells using patch clamp methods
【2h】

Measurement of the membrane potential in small cells using patch clamp methods

机译:使用膜片钳方法测量小细胞膜电位

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The resting membrane potential, Em, of mammalian cells is a fundamental physiological parameter. Even small changes in Em can modulate excitability, contractility and rates of cell migration. At present accurate, reproducible measurements of Em and determination of its ionic basis remain significant challenges when patch clamp methods are applied to small cells. In this study, a mathematical model has been developed which incorporates many of the main biophysical principles which govern recordings of the resting potential of “small cells”. Such a prototypical cell (approx. capacitance, 6 pF; input resistance 5 GΩ) is representative of neonatal cardiac myocytes, and other cells in the cardiovascular system (endothelium, fibroblasts) and small cells in other tissues, e.g., bone (osteoclasts) articular joints (chondrocytes) and the pancreas (β cells). Two common experimental conditions have been examined: (1) when the background K+ conductance is linear; and (2) when this K+ conductance is highly nonlinear and shows pronounced inward rectification. In the case of a linear K+ conductance, the presence of a “leakage” current through the seal resistance between the cell membrane and the patch pipette always depolarizes Em. Our calculations confirm that accurate characterization of Em is possible when the seal resistance is at least five times larger than the input resistance of the targeted cell. Measurement of Em under conditions in which the main background current includes a markedly nonlinear K+ conductance (due to inward rectification) yields complex and somewhat counter-intuitive findings. In fact, there are at least two possible stable values of resting membrane potential for a cell when the nonlinear, inwardly rectifying K+ conductance interacts with the seal current. This type of bistable behavior has been reported in a variety of small mammalian cells, including those from the heart, endothelium, smooth muscle and bone. Our theoretical treatment of these two common experimental situations provides useful mechanistic insights, and suggests practical methods by which these significant limitations, and their impact, can be minimized.
机译:哺乳动物细胞的静息膜电位Em是基本的生理参数。 Em的即使很小的变化也可以调节兴奋性,收缩性和细胞迁移速率。当前,当将膜片钳方法应用于小型细胞时,准确,可重现的Em含量测定及其离子基础的确定仍然是重大挑战。在这项研究中,已经开发出一种数学模型,该模型结合了控制“小细胞”静息电位记录的许多主要生物物理原理。这种原型细胞(大约电容为6 pF;输入电阻为5GΩ)代表了新生儿心肌细胞,以及心血管系统中的其他细胞(内皮,成纤维细胞)和其他组织中的小细胞,例如骨骼(破骨细胞)关节(软骨细胞)和胰腺(β细胞)。研究了两种常见的实验条件:(1)当背景K + 电导是线性的时; (2)当该K + 电导高度非线性并且表现出明显的向内整流时。在线性K + 电导的情况下,通过细胞膜和贴片移液器之间的密封电阻的“泄漏”电流始终会使Em消极化。我们的计算证实,当密封电阻至少比目标电池的输入电阻大五倍时,Em的准确表征是可能的。在主要背景电流包括明显的非线性K + 电导(由于向内整流)的条件下测量Em会产生复杂且有点违反直觉的发现。实际上,当非线性向内整流的K + 电导与密封电流相互作用时,电池的静息膜电位至少存在两个可能的稳定值。在各种小型哺乳动物细胞中,包括从心脏,内皮,平滑肌和骨骼中获得的这种双稳态行为,已有报道。我们对这两种常见实验情况的理论处理提供了有用的机理见解,并提出了可将这些重大限制及其影响最小化的实用方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号