首页> 美国卫生研究院文献>Journal of Visualized Experiments : JoVE >Comprehensive Characterization of Extended Defects in Semiconductor Materials by a Scanning Electron Microscope
【2h】

Comprehensive Characterization of Extended Defects in Semiconductor Materials by a Scanning Electron Microscope

机译:扫描电子显微镜对半导体材料中扩展缺陷的全面表征

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Extended defects such as dislocations and grain boundaries have a strong influence on the performance of microelectronic devices and on other applications of semiconductor materials. However, it is still under debate how the defect structure determines the band structure, and therefore, the recombination behavior of electron-hole pairs responsible for the optical and electrical properties of the extended defects. The present paper is a survey of procedures for the spatially resolved investigation of structural and of physical properties of extended defects in semiconductor materials with a scanning electron microscope (SEM). Representative examples are given for crystalline silicon. The luminescence behavior of extended defects can be investigated by cathodoluminescence (CL) measurements. They are particularly valuable because spectrally and spatially resolved information can be obtained simultaneously. For silicon, with an indirect electronic band structure, CL measurements should be carried out at low temperatures down to 5 K due to the low fraction of radiative recombination processes in comparison to non-radiative transitions at room temperature. For the study of the electrical properties of extended defects, the electron beam induced current (EBIC) technique can be applied. The EBIC image reflects the local distribution of defects due to the increased charge-carrier recombination in their vicinity. The procedure for EBIC investigations is described for measurements at room temperature and at low temperatures. Internal strain fields arising from extended defects can be determined quantitatively by cross-correlation electron backscatter diffraction (ccEBSD). This method is challenging because of the necessary preparation of the sample surface and because of the quality of the diffraction patterns which are recorded during the mapping of the sample. The spatial resolution of the three experimental techniques is compared.
机译:位错和晶界之类的扩展缺陷对微电子器件的性能以及半导体材料的其他应用有很大的影响。但是,缺陷结构如何确定能带结构以及因此决定扩展缺陷的光学和电学性质的电子-空穴对的复合行为仍在争论中。本文是对使用扫描电子显微镜(SEM)在空间上研究半导体材料中扩展缺陷的结构和物理特性的程序进行的调查。给出了结晶硅的代表性实例。扩展缺陷的发光行为可以通过阴极发光(CL)测量进行研究。它们特别有价值,因为可以同时获得光谱和空间分辨的信息。对于具有间接电子能带结构的硅,与室温下的非辐射跃迁相比,由于辐射复合过程的比例较低,因此应在低至5 K的低温下进行CL测量。为了研究扩展缺陷的电性能,可以应用电子束感应电流(EBIC)技术。 EBIC图像反映了由于缺陷附近的电荷载流子复合增加而引起的缺陷的局部分布。描述了用于在室温和低温下进行测量的EBIC研究程序。扩展缺陷引起的内部应变场可以通过互相关电子背散射衍射(ccEBSD)定量确定。由于必须准备样品表面并且由于在样品标测期间记录的衍射图样的质量,因此该方法具有挑战性。比较了三种实验技术的空间分辨率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号