首页> 美国卫生研究院文献>Tomography >Accuracy and Performance of Functional Parameter Estimation Using a Novel Numerical Optimization Approach for GPU-Based Kinetic Compartmental Modeling
【2h】

Accuracy and Performance of Functional Parameter Estimation Using a Novel Numerical Optimization Approach for GPU-Based Kinetic Compartmental Modeling

机译:基于GPU的动力学隔室建模的新型数值优化方法估计功能参数的准确性和性能

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Quantitative kinetic parameters derived from dynamic contrast-enhanced (DCE) data are dependent on signal measurement quality and choice of pharmacokinetic model. However, the fundamental optimization analysis method is equally important and its impact on pharmacokinetic parameters has been mostly overlooked. We examine the effects of those choices on accuracy and performance of parameter estimation using both computer processing unit and graphical processing unit (GPU) numerical optimization implementations and evaluate the improvements offered by a novel optimization approach. A test framework was developed where experimentally derived population-average arterial input function and randomly sampled parameter sets {Ktrans, Kep, Vb, τ} were used to generate known tissue curves. Five numerical optimization algorithms were evaluated: sequential quadratic programming, downhill simplex (Nelder–Mead), pattern search, simulated annealing, and differential evolution. This was combined with various objective function implementation details: delay approximation, discretization and varying sampling rates. Then, impact of noise and CPU/GPU implementation was tested for speed and accuracy. Finally, the optimal method was compared to conventional implementation as applied to clinical DCE computed tomography. Nelder–Mead, differential evolution and sequential quadratic programming produced good results on clean and noisy input data outperforming simulated annealing and pattern search in terms of speed and accuracy in the respective order of 10−8%, 10−7%, and ×10−6%). A novel approach for DCE numerical optimization (infinite impulse response with fractional delay approximation) was implemented on GPU for speed increase of at least 2 orders of magnitude. Applied to clinical data, the magnitude of overall parameter error was <10%.
机译:从动态对比增强(DCE)数据得出的定量动力学参数取决于信号测量质量和药代动力学模型的选择。但是,基本的优化分析方法同样重要,并且它对药代动力学参数的影响已被大多数人忽略。我们使用计算机处理单元和图形处理单元(GPU)数值优化实现来检查这些选择对参数估计的准确性和性能的影响,并评估一种新颖的优化方法所提供的改进。开发了一个测试框架,其中实验得出的人口平均动脉输入函数和随机采样的参数集{Ktrans,Kep,Vb,τ}用于生成已知的组织曲线。评估了五个数值优化算法:顺序二次规划,下坡单纯形(Nelder–Mead),模式搜索,模拟退火和差分演化。它与各种目标函数实现细节结合在一起:延迟近似,离散化和变化的采样率。然后,测试了速度和准确性对噪声和CPU / GPU实施的影响。最后,将最佳方法与应用于临床DCE计算机断层扫描的常规方法进行了比较。在速度和精度方面,Nelder-Mead,差分演化和顺序二次编程在干净和嘈杂的输入数据上均取得了良好的效果,其速度和精度分别优于模拟退火和模式搜索,分别为10 −8 %,10 < sup> −7 %和×10 −6 %)。在GPU上实现了DCE数值优化(无限脉冲响应和分数延迟近似)的新方法,以将速度提高至少2个数量级。应用于临床数据,总体参数误差的幅度小于10%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号