首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >Uniformly Porous Nanocrystalline CaMgFe1.33Ti3O12 Ceramic Derived Electro-Ceramic Nanocomposite for Impedance Type Humidity Sensor
【2h】

Uniformly Porous Nanocrystalline CaMgFe1.33Ti3O12 Ceramic Derived Electro-Ceramic Nanocomposite for Impedance Type Humidity Sensor

机译:用于阻抗型湿度传感器的均匀多孔纳米晶体CaMgFe1.33Ti3O12陶瓷衍生的电陶瓷纳米复合材料

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Since humidity sensors have been widely used in many sectors, a suitable humidity sensing material with improved sensitivity, faster response and recovery times, better stability and low hysteresis is necessary to be developed. Here, we fabricate a uniformly porous humidity sensor using Ca, Ti substituted Mg ferrites with chemical formula of CaMgFe1.33Ti3O12 as humidity sensing materials by solid-sate step-sintering technique. This synthesis technique is useful to control the grain size with increased porosity to enhance the hydrophilic characteristics of the CaMgFe1.33Ti3O12 nanoceramic based sintered electro-ceramic nanocomposites. The highest porosity, lowest density and excellent surface-hydrophilicity properties were obtained at 1050 °C sintered ceramic. The performance of this impedance type humidity sensor was evaluated by electrical characterizations using alternating current (AC) in the 33%–95% relative humidity (RH) range at 25 °C. Compared with existing conventional resistive humidity sensors, the present sintered electro-ceramic nanocomposite based humidity sensor showed faster response time (20 s) and recovery time (40 s). This newly developed sensor showed extremely high sensitivity (%S) and small hysteresis of <3.4%. Long-term stability of the sensor had been determined by testing for 30 consecutive days. Therefore, the high performance sensing behavior of the present electro-ceramic nanocomposites would be suitable for a potential use in advanced humidity sensors.
机译:由于湿度传感器已在许多领域广泛使用,因此需要开发一种具有改善的灵敏度,更快的响应和恢复时间,更好的稳定性和低滞后性的合适的湿度传感材料。在这里,我们通过固相分步烧结技术,使用化学式为CaMgFe1.33Ti3O12的Ca,Ti取代的Mg铁氧体作为湿度传感材料,制造出均匀多孔的湿度传感器。该合成技术可用于控制具有增加的孔隙率的晶粒尺寸,以增强基于CaMgFe1.33Ti3O12纳米陶瓷的烧结电陶瓷纳米复合材料的亲水性。在1050°C的烧结陶瓷中获得了最高的孔隙率,最低的密度和优异的表面亲水性。该阻抗型湿度传感器的性能通过在25°C下使用33%–95%相对湿度(RH)范围内的交流电(AC)进行电特性评估来评估。与现有的常规电阻式湿度传感器相比,本烧结的基于电陶瓷纳米复合材料的湿度传感器显示出更快的响应时间(20 s)和恢复时间(40 s)。这种新开发的传感器显示出极高的灵敏度(%S)和小于3.4%的小滞后。通过连续30天的测试确定了传感器的长期稳定性。因此,本发明的电陶瓷纳米复合材料的高性能感测行为将适合潜在地用于高级湿度传感器中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号