首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >Optical Characteristic Research on Fiber Bragg Gratings Utilizing Finite Element and Eigenmode Expansion Methods
【2h】

Optical Characteristic Research on Fiber Bragg Gratings Utilizing Finite Element and Eigenmode Expansion Methods

机译:光纤布拉格光栅的有限元和本征模扩展方法的光学特性研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Compared with coupled-mode theory (CMT), which is widely used for studies involving optical fiber Bragg gratings (FBGs), the proposed investigation scheme is visualized, diagrammatic, and simple. This method combines the finite element method (FEM) and eigenmode expansion method (EEM). The function of the FEM is to calculate all guided modes that match the boundary conditions of optical fiber waveguides. Moreover, the FEM is used for implementing power propagation for HE11 in optical fiber devices. How the periodic characteristic of FBG causes this novel scheme to be substantially superior to CMT is explained in detail. Regarding current numerical calculation techniques, the scheme proposed in this paper is the only method capable of the 3D design and analysis of large periodic components. Additionally, unlike CMT, in which deviations exist between the designed wavelength λD and the maximal reflection wavelength λmax, the proposed method performs rapid scans of the periods of optical FBG. Therefore, once the operating wavelength is set for the component design, the maximal reflection wavelength of the final products can be accurately limited to that of the original design, such as λ = 1550 nm. Furthermore, a comparison between the period scan plot and the optical spectra plot for FBG indicated an inverse relationship between the periods and wavelengths. Consequently, this property can be used to predict the final FBG spectra before implementing time-consuming calculations. By employing this novel investigation scheme involving a rigorous design procedure, the graphical and simple calculation method reduces the studying time and professional expertise required for researching and applying optical FBG.
机译:与广泛用于涉及光纤布拉格光栅(FBG)的研究的耦合模式理论(CMT)相比,所提出的研究方案是可视化,图表化和简单的。该方法结合了有限元方法(FEM)和本征模展开方法(EEM)。 FEM的功能是计算与光纤波导边界条件匹配的所有引导模式。此外,FEM用于在光纤设备中实现HE11的功率传播。详细说明了FBG的周期性特性如何导致该新颖方案明显优于CMT。对于当前的数值计算技术,本文提出的方案是唯一能够对大型周期分量进行3D设计和分析的方法。另外,与CMT不同,在设计波长λD和最大反射波长λmax之间存在偏差的情况下,所提出的方法可以对光学FBG的周期进行快速扫描。因此,一旦为组件设计设置了工作波长,最终产品的最大反射波长就可以准确地限制为原始设计的最大反射波长,例如λ= 1550 nm。此外,FBG的周期扫描图和光谱图之间的比较表明,周期和波长之间存在反比关系。因此,此属性可用于在执行耗时的计算之前预测最终的FBG光谱。通过采用涉及严格设计程序的新颖调查方案,图形化和简单的计算方法减少了研究和应用光学FBG所需的学习时间和专业知识。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号