首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >A Phenomenological Model for the Photocurrent Transient Relaxation Observed in ZnO-Based Photodetector Devices
【2h】

A Phenomenological Model for the Photocurrent Transient Relaxation Observed in ZnO-Based Photodetector Devices

机译:基于ZnO的光电探测器器件中观察到的光电流瞬态弛豫的现象学模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We present a phenomenological model for the photocurrent transient relaxation observed in ZnO-based metal-semiconductor-metal (MSM) planar photodetector devices based on time-resolved surface band bending. Surface band bending decreases during illumination, due to migration of photogenerated holes to the surface. Immediately after turning off illumination, conduction-band electrons must overcome a relatively low energy barrier to recombine with photogenerated holes at the surface; however, with increasing time, the adsorption of oxygen at the surface or electron trapping in the depletion region increases band bending, resulting in an increased bulk/surface energy barrier that slows the transport of photogenerated electrons. We present a complex rate equation based on thermionic transition of charge carriers to and from the surface and numerically fit this model to transient photocurrent measurements of several MSM planar ZnO photodetectors at variable temperature. Fitting parameters are found to be consistent with measured values in the literature. An understanding of the mechanism for persistent photoconductivity could lead to mitigation in future device applications.
机译:我们提出了一种基于时间分辨的表面带弯曲的基于ZnO的金属-半导体-金属(MSM)平面光电检测器装置中观察到的光电流瞬态弛豫的现象学模型。由于光生空穴向表面的迁移,在照明期间表面带的弯曲减少。关闭照明后,导带电子必须立即克服相对较低的能垒,才能与表面的光生空穴复合。然而,随着时间的增加,表面上的氧气吸附或耗尽区中的电子俘获会增加能带弯曲,从而导致增大的体/表面能垒,从而减慢光生电子的传输。我们提出了一个基于电荷载流子从表面到表面的热离子跃迁的复杂速率方程,并将该模型数值拟合到可变温度下多个MSM平面ZnO光电探测器的瞬态光电流测量。在文献中发现拟合参数与测量值一致。对持久光电导性机制的理解可能会减轻未来设备的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号