首页> 美国卫生研究院文献>Science and Technology of Advanced Materials >Thermal conductivity engineering of bulk and one-dimensional Si-Ge nanoarchitectures
【2h】

Thermal conductivity engineering of bulk and one-dimensional Si-Ge nanoarchitectures

机译:块状和一维Si-Ge纳米结构的导热系数工程

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Various theoretical and experimental methods are utilized to investigate the thermal conductivity of nanostructured materials; this is a critical parameter to increase performance of thermoelectric devices. Among these methods, equilibrium molecular dynamics (EMD) is an accurate technique to predict lattice thermal conductivity. In this study, by means of systematic EMD simulations, thermal conductivity of bulk Si-Ge structures (pristine, alloy and superlattice) and their nanostructured one dimensional forms with square and circular cross-section geometries (asymmetric and symmetric) are calculated for different crystallographic directions. A comprehensive temperature analysis is evaluated for selected structures as well. The results show that one-dimensional structures are superior candidates in terms of their low lattice thermal conductivity and thermal conductivity tunability by nanostructuring, such as by diameter modulation, interface roughness, periodicity and number of interfaces. We find that thermal conductivity decreases with smaller diameters or cross section areas. Furthermore, interface roughness decreases thermal conductivity with a profound impact. Moreover, we predicted that there is a specific periodicity that gives minimum thermal conductivity in symmetric superlattice structures. The decreasing thermal conductivity is due to the reducing phonon movement in the system due to the effect of the number of interfaces that determine regimes of ballistic and wave transport phenomena. In some nanostructures, such as nanowire superlattices, thermal conductivity of the Si/Ge system can be reduced to nearly twice that of an amorphous silicon thermal conductivity. Additionally, it is found that one crystal orientation,   100  , is better than the   111   crystal orientation in one-dimensional and bulk SiGe systems. Our results clearly point out the importance of lattice thermal conductivity engineering in bulk and nanostructures to produce high-performance thermoelectric materials.
机译:利用各种理论和实验方法来研究纳米结构材料的热导率。这是提高热电设备性能的关键参数。在这些方法中,平衡分子动力学(EMD)是预测晶格热导率的准确技术。在这项研究中,通过系统的EMD模拟,针对不同的晶体学计算了整体Si-Ge结构(原始,合金和超晶格)及其具有正方形和圆形截面几何形状(不对称和对称)的纳米结构一维形式的导热系数。指示。还将针对选定的结构进行全面的温度分析。结果表明,一维结构就其低晶格热导率和通过纳米结构(如通过直径调制,界面粗糙度,周期性和界面数)的热导率可调性而言,是优良的候选者。我们发现,导热系数随着直径或横截面积的减小而降低。此外,界面粗糙度降低了热导率,产生了深远的影响。此外,我们预测,在对称的超晶格结构中,存在一个特定的周期性,可使导热系数最小。导热系数的下降是由于系统中声子运动的减少所致,这是由于界面数量决定弹道和波传输现象的状态所致。在某些纳米结构中,例如纳米线超晶格,Si / Ge系统的热导率可以降低到非晶硅热导率的近两倍。此外,发现在一维和块状SiGe系统中,<100>的一种晶体取向要好于<111>的晶体取向。我们的结果清楚地指出了在块状和纳米结构中进行晶格热导率工程制造高性能热电材料的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号