首页> 美国卫生研究院文献>Science Advances >Catalysis beyond frontier molecular orbitals: Selectivity in partial hydrogenation of multi-unsaturated hydrocarbons on metal catalysts
【2h】

Catalysis beyond frontier molecular orbitals: Selectivity in partial hydrogenation of multi-unsaturated hydrocarbons on metal catalysts

机译:超越前沿分子轨道的催化:金属催化剂上多不饱和烃部分加氢的选择性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The mechanistic understanding and control over transformations of multi-unsaturated hydrocarbons on transition metal surfaces remains one of the major challenges of hydrogenation catalysis. To reveal the microscopic origins of hydrogenation chemoselectivity, we performed a comprehensive theoretical investigation on the reactivity of two α,β-unsaturated carbonyls—isophorone and acrolein—on seven (111) metal surfaces: Pd, Pt, Rh, Ir, Cu, Ag, and Au. In doing so, we uncover a general mechanism that goes beyond the celebrated frontier molecular orbital theory, rationalizing the C═C bond activation in isophorone and acrolein as a result of significant surface-induced broadening of high-energy inner molecular orbitals. By extending our calculations to hydrogen-precovered surface and higher adsorbate surface coverage, we further confirm the validity of the “inner orbital broadening mechanism” under realistic catalytic conditions. The proposed mechanism is fully supported by our experimental reaction studies for isophorone and acrolein over Pd nanoparticles terminated with (111) facets. Although the position of the frontier molecular orbitals in these molecules, which are commonly considered to be responsible for chemical interactions, suggests preferential hydrogenation of the C═O double bond, experiments show that hydrogenation occurs at the C═C bond on Pd catalysts. The extent of broadening of inner molecular orbitals might be used as a guiding principle to predict the chemoselectivity for a wide class of catalytic reactions at metal surfaces.
机译:对过渡金属表面上多不饱和烃转化的机理的理解和控制仍然是加氢催化的主要挑战之一。为了揭示氢化化学选择性的微观起源,我们对两种α,β-不饱和羰基异构体和丙烯醛在七种(111)金属表面上的反应性进行了全面的理论研究:Pd,Pt,Rh,Ir,Cu,Ag和金。通过这样做,我们发现了一个超越著名的前沿分子轨道理论的通用机制,该机制合理化了异佛尔酮和丙烯醛中C═C键的活化,这是由于高能内部分子轨道在表面上引起的显着扩展。通过将我们的计算扩展到氢覆盖的表面和更高的被吸附物表面覆盖率,我们进一步证实了在实际催化条件下“内部轨道扩展机制”的有效性。我们对异佛尔酮和丙烯醛在以(111)小平面终止的Pd纳米颗粒上进行的实验反应研究完全支持了所提出的机理。尽管这些分子中前沿分子轨道的位置(通常被认为是化学相互作用的原因)表明了C═O双键的优先氢化,但实验表明氢化发生在Pd催化剂的C═C键上。内部分子轨道的扩展程度可以用作指导原则,以预测金属表面上多种催化反应的化学选择性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号