首页> 美国卫生研究院文献>Science Advances >Computationally designed peptides for self-assembly of nanostructured lattices
【2h】

Computationally designed peptides for self-assembly of nanostructured lattices

机译:用于纳米结构晶格自组装的计算设计肽

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Folded peptides present complex exterior surfaces specified by their amino acid sequences, and the control of these surfaces offers high-precision routes to self-assembling materials. The complexity of peptide structure and the subtlety of noncovalent interactions make the design of predetermined nanostructures difficult. Computational methods can facilitate this design and are used here to determine 29-residue peptides that form tetrahelical bundles that, in turn, serve as building blocks for lattice-forming materials. Four distinct assemblies were engineered. Peptide bundle exterior amino acids were designed in the context of three different interbundle lattices in addition to one design to produce bundles isolated in solution. Solution assembly produced three different types of lattice-forming materials that exhibited varying degrees of agreement with the chosen lattices used in the design of each sequence. Transmission electron microscopy revealed the nanostructure of the sheetlike nanomaterials. In contrast, the peptide sequence designed to form isolated, soluble, tetrameric bundles remained dispersed and did not form any higher-order assembled nanostructure. Small-angle neutron scattering confirmed the formation of soluble bundles with the designed size. In the lattice-forming nanostructures, the solution assembly process is robust with respect to variation of solution conditions (pH and temperature) and covalent modification of the computationally designed peptides. Solution conditions can be used to control micrometer-scale morphology of the assemblies. The findings illustrate that, with careful control of molecular structure and solution conditions, a single peptide motif can be versatile enough to yield a wide range of self-assembled lattice morphologies across many length scales (1 to 1000 nm).
机译:折叠的肽具有由其氨基酸序列指定的复杂外表面,对这些表面的控制提供了自组装材料的高精度途径。肽结构的复杂性和非共价相互作用的微妙性使得预定纳米结构的设计变得困难。计算方法可以促进这种设计,并在这里用于确定形成四螺旋束的29个残基肽,这些肽又充当晶格形成材料的基础。设计了四个不同的组件。除了一种设计以在溶液中分离出束以外,还根据三种不同的束间晶格设计了肽束外部氨基酸。溶液组装产生了三种不同类型的晶格形成材料,它们与每个序列设计中使用的所选晶格表现出不同程度的一致性。透射电子显微镜揭示了片状纳米材料的纳米结构。相反,设计成形成分离的,可溶的四聚体束的肽序列保持分散并且不形成任何高阶组装的纳米结构。小角中子散射证实了具有设计尺寸的可溶束的形成。在形成晶格的纳米结构中,溶液组装过程相对于溶液条件(pH和温度)的变化以及计算设计的肽的共价修饰是稳定的。固溶条件可用于控制组件的微米级形态。研究结果表明,通过仔细控制分子结构和溶液条件,单个肽基序可以具有足够的通用性,可以在许多长度范围(1至1000 nm)上产生广泛的自组装晶格形态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号