首页> 美国卫生研究院文献>Protein Science : A Publication of the Protein Society >Evolutionary dynamics of viral escape under antibodies stress: A biophysical model
【2h】

Evolutionary dynamics of viral escape under antibodies stress: A biophysical model

机译:抗体胁迫下病毒逃逸的进化动力学:一种生物物理模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Viruses constantly face the selection pressure of antibodies, either from innate immune response of the host or from administered antibodies for treatment. We explore the interplay between the biophysical properties of viral proteins and the population and demographic variables in the viral escape. The demographic and population genetics aspect of the viral escape have been explored before; however one important assumption was the a priori distribution of fitness effects (DFE). Here, we relax this assumption by instead considering a realistic biophysics‐based genotype‐phenotype relationship for RNA viruses escaping antibodies stress. In this model the DFE is itself an evolvable property that depends on the genetic background (epistasis) and the distribution of biophysical effects of mutations, which is informed by biochemical experiments and theoretical calculations in protein engineering. We quantitatively explore in silico the viability of viral populations under antibodies pressure and derive the phase diagram that defines the fate of the virus population (extinction or escape from stress) in a range of viral mutation rates and antibodies concentrations. We find that viruses are most resistant to stress at an optimal mutation rate (OMR) determined by the competition between supply of beneficial mutation to facilitate escape from stressors and lethal mutagenesis caused by excess of destabilizing mutations. We then show the quantitative dependence of the OMR on genome length and viral burst size. We also recapitulate the experimental observation that viruses with longer genomes have smaller mutation rate per nucleotide.
机译:病毒不断面对抗体的选择压力,要么来自宿主的先天免疫应答,要么来自用于治疗的抗体。我们探索病毒蛋白的生物物理特性与病毒逃逸中的种群和人口统计学变量之间的相互作用。以前已经探讨了病毒逃逸的人口统计学和人口遗传学方面。然而,一个重要的假设是适应性效应(DFE)的先验分布。在这里,我们通过考虑针对RNA病毒逃避抗体应激的现实的基于生物物理学的基因型-表型关系,放松了这一假设。在此模型中,DFE本身就是一个可进化的属性,取决于遗传背景(突变)和突变的生物物理效应分布,这是通过蛋白质工程中的生化实验和理论计算得出的。我们在计算机上定量地研究了在抗体压力下病毒种群的生存力,并得出了在一系列病毒突变率和抗体浓度范围内定义病毒种群命运(灭绝或摆脱压力)的相图。我们发现病毒在最佳突变率(OMR)下对胁迫具有最强的抵抗力,该突变率由有益突变的提供以促进从应激源的逃逸与过量不稳定不稳定突变引起的致突变性之间的竞争决定。然后,我们显示了OMR对基因组长度和病毒爆发大小的定量依赖性。我们还总结了实验观察,即具有更长基因组的病毒每个核苷酸的突变率更低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号