首页> 美国卫生研究院文献>Protein Science : A Publication of the Protein Society >Building a foundation for structure-based cellulosome design for cellulosic ethanol: Insight into cohesin-dockerin complexation from computer simulation
【2h】

Building a foundation for structure-based cellulosome design for cellulosic ethanol: Insight into cohesin-dockerin complexation from computer simulation

机译:为纤维素乙醇的基于结构的纤维素体设计奠定基础:通过计算机模拟深入了解粘着蛋白-dockerin复合物

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The organization and assembly of the cellulosome, an extracellular multienzyme complex produced by anaerobic bacteria, is mediated by the high-affinity interaction of cohesin domains from scaffolding proteins with dockerins of cellulosomal enzymes. We have performed molecular dynamics simulations and free energy calculations on both the wild type (WT) and D39N mutant of the C. thermocellum Type I cohesin-dockerin complex in aqueous solution. The D39N mutation has been experimentally demonstrated to disrupt cohesin-dockerin binding. The present MD simulations indicate that the substitution triggers significant protein flexibility and causes a major change of the hydrogen-bonding network in the recognition strips—the conserved loop regions previously proposed to be involved in binding—through electrostatic and salt-bridge interactions between β-strands 3 and 5 of the cohesin and α-helix 3 of the dockerin. The mutation-induced subtle disturbance in the local hydrogen-bond network is accompanied by conformational rearrangements of the protein side chains and bound water molecules. Additional free energy perturbation calculations of the D39N mutation provide differences in the cohesin-dockerin binding energy, thus offering a direct, quantitative comparison with experiments. The underlying molecular mechanism of cohesin-dockerin complexation is further investigated through the free energy profile, that is, potential of mean force (PMF) calculations of WT cohesin-dockerin complex. The PMF shows a high-free energy barrier against the dissociation and reveals a stepwise pattern involving both the central β-sheet interface and its adjacent solvent-exposed loop/turn regions clustered at both ends of the β-barrel structure.
机译:纤维素酶体(厌氧细菌产生的一种细胞外多酶复合物)的组织和组装是由来自支架蛋白的粘着蛋白域与纤维素酶的dockerins的高亲和力相互作用介导的。我们已经在水溶液中对热纤梭菌I型粘着蛋白-dockerin复合物的野生型(WT)和D39N突变体进行了分子动力学模拟和自由能计算。实验证明,D39N突变可破坏粘着蛋白-dockerin结合。目前的MD模拟结果表明,这种取代反应会触发蛋白质的显着柔韧性,并通过β-之间的静电和盐桥相互作用,导致识别条中的氢键网络发生重大变化(先前建议参与结合的保守环区)。粘着蛋白的第3和第5链以及dockerin的α-螺旋3。突变在局部氢键网络中引起的细微扰动伴随着蛋白质侧链和结合的水分子的构象重排。 D39N突变的其他自由能扰动计算提供了cohesin-dockerin结合能的差异,从而提供了与实验的直接定量比较。通过自由能谱,即WT粘附素-dockerin复合物的平均力(PMF)计算潜力,进一步研究了粘附素-dockerin复合的潜在分子机制。 PMF表现出对解离的高自由能垒,并且揭示了一个逐步模式,该模式涉及中心β-折叠界面及其聚集在β-桶结构两端的相邻溶剂暴露的环/匝区。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号