首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Closed-loop cycles of experiment design execution and learning accelerate systems biology model development in yeast
【2h】

Closed-loop cycles of experiment design execution and learning accelerate systems biology model development in yeast

机译:实验设计执行和学习的闭环循环加快了酵母中系统生物学模型的开发

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

One of the most challenging tasks in modern science is the development of systems biology models: Existing models are often very complex but generally have low predictive performance. The construction of high-fidelity models will require hundreds/thousands of cycles of model improvement, yet few current systems biology research studies complete even a single cycle. We combined multiple software tools with integrated laboratory robotics to execute three cycles of model improvement of the prototypical eukaryotic cellular transformation, the yeast (Saccharomyces cerevisiae) diauxic shift. In the first cycle, a model outperforming the best previous diauxic shift model was developed using bioinformatic and systems biology tools. In the second cycle, the model was further improved using automatically planned experiments. In the third cycle, hypothesis-led experiments improved the model to a greater extent than achieved using high-throughput experiments. All of the experiments were formalized and communicated to a cloud laboratory automation system (Eve) for automatic execution, and the results stored on the semantic web for reuse. The final model adds a substantial amount of knowledge about the yeast diauxic shift: 92 genes (+45%), and 1,048 interactions (+147%). This knowledge is also relevant to understanding cancer, the immune system, and aging. We conclude that systems biology software tools can be combined and integrated with laboratory robots in closed-loop cycles.
机译:系统科学模型的发展是现代科学中最具挑战性的任务之一:现有模型通常非常复杂,但通常具有较低的预测性能。高保真模型的构建将需要数以千计的模型改进周期,但是目前很少有系统生物学研究完成一个周期。我们将多种软件工具与集成的实验室机器人技术相结合,以执行三个周期的原型真核细胞转化,酵母(Saccharomyces cerevisiae)双性转化模型改进。在第一个周期中,使用生物信息学和系统生物学工具开发了一种性能优于先前最好的双性位移模型的模型。在第二个周期中,使用自动计划的实验进一步完善了该模型。在第三个周期中,以假设为主导的实验比使用高通量实验获得的改善程度更大。所有实验均已正式化并传达给云实验室自动化系统(Eve)以进行自动执行,并将结果存储在语义网上以供重用。最终模型增加了有关酵母双峰转变的大量知识:92个基因(+ 45%)和1,048个相互作用(+ 147%)。这些知识也与了解癌症,免疫系统和衰老有关。我们得出结论,系统生物学软件工具可以闭环循环与实验室机器人结合和集成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号